
DOT NET TECHNOLOGIES

UNIT -1

1.WHAT IS .NET?

 NET is a software framework which is designed and

developed by Microsoft.

 The first version of the .Net framework was 1.0 which

came in the year 2002.

 In easy words, it is a virtual machine for compiling and

executing programs written in different languages like C#,

VB.Net etc.

 It is used to develop Form-based applications, Web-

based applications, and Web services.

 There is a variety of programming languages

available on the .Net platform, VB.Net and C#

being the most common ones.

 It is used to build applications for Windows,

phone, web, etc.

What is a Web Service?

Client to Client - Clients can use XML Web Services to

communicate data

Client to Server - Clients can send data to and receive data from

servers.

 Server to Server - Servers can share data with each other.

Service to Service - web services can work together.

1.1 THE WEB CLIENT/ SERVER MODEL

The Web Clients and Web Servers:

 Web Based environment takes place between Two entities:

1.A Web Client , which is the software that requests

files, data and services

 2 A Web Server,which fulfills the client

requests for contents

Protocols for Web Client/Server Communication:

The Web Client and Server send information using TCP/IP

 TCP - Transmission Control Protocol

TCP is responsible for breaking data down into small

packets before they can be sent over a network, and for assembling

the packets again when they arrive.

 IP - Internet Protocol

IP takes care of the communication between

computers. It is responsible for addressing, sending and

receiving the data packets over the Internet.

 FTP - File Transfer Protocol

FTP takes care of transmission of files

between computers.

 A socket is line of plumbing established either client or server

software that is used to move packets between client and server.

 A Packets is a fragments of data includes

information about its origination and

destination.

 Web Application communicates over Sockets using higher

level protocol the HTTP (HyperText Transfer Protocol).

 HTTP is a protocol which allows the fetching of

resources, such as HTML documents.

 It is the foundation of any data exchange on the

Web and it is a client-server protocol, which means

requests are initiated by the recipient, usually the

Web browser.

SERVER SIDE PROCESSING WITH CGI

 CGI works by processing the data sent by the web

browser to the web server.

 The data contained in the form fields are encoded by

the browser using X-URL-encoding system before

transmission.

 The data is sent by one of 2 methods:

 Encoding the data an HTTP POST (Post

request)

 Passing the data to script file in URL(Get

request).

 The Web Server receives this data and

passes it to CGI application of processing.

1.2 COMPONENTS OF ASP.NET AND THE .NET

FRAMEWORK

 The following are the components of asp.net and the .net

framework:

 Internet Information Server  server software that

deliver web content to the user browser.

 Asp.net page
 HTML page that host static content and

execute code. It act as the glue between the presentation layer

and application services.

 Common Language Runtime(CLR) and the ,Net

framework Library  CLR provide runtime environment for

manage code and library provide components for developing

applications.

 Managed Components  allow sharing of modules

among many different applications.

 Web Services  provide components based functionality that

access over network by any machine using variety of protocols.

1.3 Overview of Internet Information Server(IIS)

 IIS is Microsoft software for serving content on web.

 IIS use HTTP  deliver web content

 FTP and SMTP  send e-mail

 The functionality of IIS is extendable through the

ISAPI(Internet Server Application Programmers Interface).

 ISAPI program come in two flavors:

1. ISAPI Extension

2. ISPAI Filters

1. ISAPI Extension

 Resemblance to traditional CGI program.

 They receive encoded data from HTTP post request

as well as from Get request.

 It exits as window Dynamic Link Libraries (DLL).

 DLL are compiled modules whose functions are called by

another program during runtime.

 ISAPI extension are also multithreaded, which enables

them to run many times concurrently.

2. ISAPI Filters

 jobs is to intercept requests from a web browser and send back

some kind of alternative response.

 It modify’s the default behavior of web server and it

return data hence name is filter.

When web server has no ISAPI Filters the following sequence

occur:

 User requests a URL- browser send HTTP

command to the web server.

 Web server receives the command and requests the file in

URL.

 The Server sends the content of the file to the client and

the connection is closed.

When web server has an ISAPI Filters the following sequence

occur:

 User requests a URL -- >browser send

HTTP command to the web server.

 Web server receives the request and passes that request data as

parameter to the ISAPI filter code.

 The ISAPI filter performs some server side processing and

then send customized data through IIS server to the client and

the connection is closed.

ISAPI Filters have many applications, include

the following

 Customized logging of user activity on the server.

 Advance security system that examine the origin of each HTTP

request

 On fly decryption of files on the web server based on password.

 Modification of output stream of the web server.

1.4 OVERVIEW OF ASP.NET

 ASP.NET is unique among web application development

platforms in 2 main ways,

1.ASP.NET Application use programming language such as

VB.NET,C#,JScript.NET, which increase flexibility during

development different language can be used based on programming

skills and experience.

2. Many reusable controls that make common programming task and

basic user interface controls like buttons, text fields and drop down

lists included plus advanced controls like calender controls and

editable data grid are used in declarative manner such by click and

drag the control in your applications.

1. WEB FORM :

 Web forms allow programmers to build form

based web applications designed around event driven

application model.

 ASP.Net web forms are very powerful for a

number of reasons:

o Web forms can run on any browser. Web forms are

controlled server side and rendered using HTML

code.

o ASP.NET determines what content to serve back to

user based on automatic browser detection.

o .NET compatible language can be used to code

o Web forms execute inside the CLR which brings

all advantages

1.5 THE .NET COMMON LANGUAGE RUNTIME AND

CLASS LIBRARY

 The .Net CLR controls execution of programs within this

environment.

 Code thar runs in CLR known as Managed code

 The CLR enables language code to interact with code

written in other language at object level.

 The .Net framework class library is an collection of

data types and objects to give programmers start in

developing their applications.

 The data type and objects are designed and categorized to

make accessing system functionality such as input/output,

database access, other services easy.

 The . Net Framework class library also supports objects like

basic data types as well as abstract data types.

1.6 MANAGED COMPONENTS IN .NET

 A components is an independent unit of code that encapsulates a

task or critical business rules and logic.

 The basic programmatic steps that order entry system performs

to fulfill a customer order:

1. A clerk fills out shipping information,

billing information and order details in

computerized form then clerk sent details

to the server.

2. The server receives the data. The system

compares the order details with the list of

current product inventory.

a) If all item requested are in stock,The system

logs the order to a database.

b) If any item requested are out of stock,The

system informs the customer that the order can’t fully

filled at that time.

3. The system then calculates total cost and

shipping charges and sends the order to the

company warehouse via E-Mail.

4. The order e-mail is received at the warehouse and

the product needed are picked then product is

shipped to the customer.

 It is a good example for order processing system can be

wrapped into an order entry components.

 The .Net Framework also make deployment of the object

easy with the use of embedded metadata that describe the

details of the component to clients.

1.7 WEB SERVICES

 A Web service, is a component that resides on a Web server

and provides information and services to other network

applications using standard Web protocols such as HTTP and

Simple Object Access Protocol (SOAP).

 .NET Web services provide communications for XML

applications that operate over a .NET communications

framework.

 Users on the Internet can use applications that are not

dependent on their local operating system or hardware and are

generally browser-based.

 The main advantage of a Web service is that its consumers can

use the service without knowing about the details of its

implementation, such as the hardware platform, programming

language, object model, etc.

 Web services are designed to provide the messaging

infrastructure necessary for communication across platforms

using industry standards.

 A Web Service is a software program that uses XML to

exchange information with other software via common

internet protocols.

 In a simple sense, Web Services are a way of interacting

with objects over the Internet.

1.8 LANGUAGE INDEPENDENCE IN THE .NET

FRAMEWORK

 One great advantage of .Net Framework platform is the ability to

use language to write application.

 The Components Object Model(COM) allows for COM Components

in any language such as VB and C++.

 .NET framework language interoperability features shine.

 Every components has to follow rules of communication established

for sending information to complied components.

 In team environment,developers can be free to use whatever language

they choose to develop objects.

1.9 COM+ COMPONENTS SERVICES AND .NET

 COM+ Components Services provide transaction

processing,object pooling,queued components and other

features.

 COM+ is an integral part of windows and distributed

computing.

 COM+ provides a runtime environment for components,which

include COM+ components and .NET assemblies.

 Within this runtime environment, you can do several things:

1. Manage automatic transaction: you can commit or rollback changes

made to data in an automatic fashion when certain event happens in

program code.

2. Use declarative role-based security: you can assign execute

permissions to certain components based on logical groups to

which active user has been assigned.

3. Make Component use Object pooling: precreate object

and keep them in awaiting use by client program.

4. Create queued Components: you can immediately execute

components over a network connection.

1.10 DIRECTION AND PLANS FOR .NET

 Web Services open standard for communication and encoding of data

exchanges, this open door for any computer system to interface with any

device the user has.

 Exciting for web services,developed by Microsoft is called .NET My

Services.

 Is often refer as “Digital Safe Deposit Box” for the user.

 Inside this personal information space the user can store many things.

.NET MY SERVICES THE FOLLOWING FEATURES WILL BE

INCLUDED:

 .NET Profile – name, nickname, special dates, picture and address.

 .NET Contacts – electronic relationships/address book.

 .NET Locations – electronic and geographical location.

 .NET Inbox – Inbox item like email and voice mail, including existing mail

system.

 .NET Calendar – time and task management.

1.11 WHAT IS VB.NET?

 Visual Basic .NET is an Object-Oriented Programming (OOP)language

designed by Microsoft.

 It is a simple, modern, object-oriented computer programming language to

combine the power of .NET Framework and the common language runtime .

 VB.Net was designed to take advantage of the .NET framework-based

classes and run-time environment.

 VB.Net programming is very much based on BASIC and Visual Basic

programming languages, so if you have basic understanding on these

programming languages, then it will be a fun for you to learn VB.Net

programming language .

 The syntax is easy and you will not find yourself writing hundreds of lines

of code as there are many shortcuts that make coding so much easier in this

language.

 VB.NET is the first fully object-oriented programming (OOP) version of

Visual Basic, and as such, supports OOP concepts such as abstraction,

inheritance, polymorphism , and aggregation.

1.12 YOUR FIRST VB APPLICATION

 Step 1: Launch the VS.NET IDE.

a. From the windows start button, select PROGRAM->MICROSOFT

VISUAL STUDIO.NET

7.0 -> MICROSOFT VISUAL STUDIO.NET 7.0.The VS.NET

home page appears as

STEP 2:Create the VB console application project.

 a. To begin new project, select FileNew  Project from

the menu bar. The New Project dialog appears with options for

new Project.

b. Once you locate and highlight the option, then you need to give

project name by entering the name in Name textbox as “HelloWorld”.

Then you can select the location for project files by clicking the

Browse Button or you can use default location.

c. Now click OK Button to create new project.

STEP 3: Enter the Program Code.

a. you should now see the code window f or Module 1, a default

code Module 1 create by VS.NET. You can modify the default code in

this window to create your first application.

b. Now you are ready to type in some code to make “Helloworld “

project say hello to its user.

Example Coding:

c. Click Save All button on the tool bar. This save your code module and all

other modified files.

STEP 4: Build and Run Project.

a. To build the project, Select Build  Build Solution from

menu. If the build process is successful, then in status bar

appear as “Solution update succeeded”.

b. To run the Program,Click Start button in the toolbar or you can press F5

key.Then console window will apprear with the running program

c. When program terminated (after you press <enter> to continue),the

system returns to VS.NET.

1.13 VARIABLES

 A variable is a simple name used to store the value of a specific data

type in computer memory.

 In VB.NET, each variable has a particular data type that determines the

size, range, and fixed space in computer memory.

 With the help of variable, we can perform several operations and

manipulate data values in any programming language.

1. VARIABLES DECLARATION

 The declaration of a variable is simple that requires a variable

name and data type followed by a Dim.

 A Dim is used in Class, Module, structure, Sub, procedure.

Syntax:

Dim [Variable_Name] As [Defined Data Type]

 There are some valid declarations of variables along with their data

type definition, as shown below:

 Further, if we want to declare more than one variable in the same

line, we must separate each variable with a comma.

Dim

Variable_name1 As DataType1,

variable_name2 As DataType2,

Variable_name3 As DataType3

 Dim Empid,Sudid as Integer

2. Data Types Available in VB.Net

3. VARIABLE INITIALIZATION

 After the declaration of a variable, we must assign a value to the

variable. The following syntax describes the initialization of a variable:

 Syntax:

Variable_name = value

 Example:

Dim Roll_no As Integer 'declaration of Roll_no

Roll_no = 101 'initialization of Roll_no

 We can also initialize a variable at the time of declaration

as:

Dim Roll_no As Integer = 101

1.14 SCOPE AND LIFETIME OF VARIABLES

 When declare a variables ,the value that it holds has limitations on

where and when it can accessed is the scope and lifetime

variables.

 variables declared in the declarations section of a module

using the Private keyword can be accessed by all the

procedures within the module.

 Variables declared in the declaration section of a code module using

the Public keyword can be accessed by the whole project.

 And variables declared using the Dim statement within a subroutine

or function can only be accessed in the procedure in which they've

been declared.

ARRAYS

 Arrays are a collection of data elements that all have the same

data type.

 Arrays are useful for processing large set of data without having

to declare a separate variable for each data element.

 Arrays have dimensionality, which refer to the number of subscripts

used to access each element in the array.

 All arrays have atleast one demension and can support up

to sixty dimensions.

 All arrays consist of contiguous memory locations.The lowest

address corresponds to the first element and the highest address to

the last element.

 The below figure shows a representation of a one dimensional arrays.

It consists of five elements, each element a string.

Creating Arrays in VB.Net

 To declare an array in VB.Net, you use the Dim statement.

 For example,

Dim Data(30) ' an array of 31 elements

Dim strData(20) As String ' an array of 21 strings

Dim twoDarray(10, 20) As Integer 'a two dimensional array of

integers arranged in 10 rows and 20 columns

DYNAMIC ARRAYS

 Dynamic arrays are arrays that can be dimensioned and re-

dimensioned as par the need of the program. You can declare a

dynamic array using the ReDim statement.

 Syntax for ReDim statement −

ReDim [Preserve] arrayname(subscripts)

Where,

 The Preserve keyword helps to preserve the data

in an existing array, when you resize it.

 arrayname is the name of the array to re-

dimension.

 subscripts specifies the new dimension.

EXAMPLE :

Dim marks() As Integer

ReDim Preserve marks(2)

marks(0) = 85

marks(1) = 75

 marks(2) = 90

CONVERTING DATA TYPES

 Variables can be converted from one data type to another.

 There are two types on conversion are

1. Implicit conversion:

 An implict conversion process makes assumptions on behalf of the

programmer about

how the data should be treated during the conversion.

Ex: Dim intA as

interger

= 3

 Dim intB as

Long

 intB = intA

2. Explicit Conversion:

 An Explicit Conversion may also used to convert data types.

 It involves the use of special vb.net functions to convert one data

type to another datatype.

Ex:

Dim intA as interger = 3

 Dim intB as string

 intB = intA

1.14 CONSTANTS

 The Constants refer to fixed values that the program may

not alter during its execution.

 Constants can be of any of the basic data types like

an integer constant, a floating constant, a character

constant, or a string.

 In VB.Net, constants are declared using the Const

statement.

Syntax:

const variablename as datatype = value

 Ex:

const strname as string = “ram”

1.12 ARITHMETIC AND COMPARISON OPERATORS

 What is an operator?

 An operator refers to a symbol that instructs the compiler

to perform a specific logical or mathematical

manipulation.

 The operator performs the operation on the provided operands.

 Microsoft VB.Net comes with various types of operators.

LIST OF OPERATORS

1. Arithmetic Operators

2. Comparison Operators

3. Logical/Bitwise Operators

4. Bit Shift Operators

5. Assignment Operators

6. Miscellaneous Operators

ARITHMETIC OPERATORS

 You can use arithmetic operators to perform various mathematical

operations in VB.NET. They include:

EXAMPLE

Sub Main()

Dim w As Integer = 11

Dim x As Integer = 5

Dim y As Integer

y = w + x

Console.WriteLine(y)

y = w - x

Console.WriteLine(y)

y = w * x

Console.WriteLine(y)

y = w / x

Console.WriteLine(y)

End Sub

COMPARISON OPERATORS

 These operators are used for making comparisons between

variables. They include the following:

EXAMPLE

Sub Main()

Dim x As Integer = 11

Dim y As Integer = 5

If (x = y) Then

Console.WriteLine("11=5 is True")

Else

Console.WriteLine(" 11=5 is False")

End If

If (x < y) Then

Console.WriteLine(" 11<5 is True")

Else

Console.WriteLine(" 11<5 is False")

End If

LOGICAL/BITWISE OPERATORS

 These operators help us in making logical decisions. They

include:

EXAMPLE

Sub Main()

Dim w As Boolean = True Dim x As Boolean = True Dim y As Integer = 5

Dim z As Integer = 20

If (w And x) Then Console.WriteLine("w And x- is true")

End If

If (y Or z) Then

Console.WriteLine(“y Or z-is true")

End If

If (w Xor x) Then

Console.WriteLine("w Xor x - is true")

End If

 ASSIGNMENT OPERATORS

EXAMPLE

Sub Main()

Dim x As Integer = 5

Dim y As Integer

y = x

Console.WriteLine(" y = x ", y)

y += x

Console.WriteLine(" y += x ", y)

y -= x

Console.WriteLine(" y -= x ", y)

End Sub

1.13 MODULARIZING YOUR CODE – FUNCTIONS AND

SUBROUTINES

 Function and subroutines allow logical organization of your

programs code.

 Function and subroutines are used to group together code statements

that make up a task.

1.Function

 A function is a group of code statements that executed and give a

result back to the code that invoked the function.

 To define a function in vb.net place any code statement between

Function and End Function keywords.

 The syntax for the Function statement is −

Function FunctionName (ParameterList) As ReturnType

[Statements]

End Function

FunctionName − indicates the name of the function

ParameterList − specifies the list of the parameters

ReturnType − specifies the data type of the variable the function

returns

EXAMPLE

Function FindMax(ByVal num1 As Integer, ByVal num2 As Integer) As

Integer

Dim result As Integer

If (num1 > num2) Then

result = num1

Else

result = num2

End If

End Function

2. SUBROUTINES

 Subroutines usually perform actions and they don’t return any

result.

 Functions, on the other hand, perform some calculations and

return a value.

 This is the only difference between subroutines and

functions. Both subroutines and functions can accept

arguments, which are values you pass to the procedure

when you call it.

 A subroutine is a block of statements that carries out a well-defined

task.

 The block of statements is placed within a set of Sub. . .End Sub

statements and can be invoked by name.

 The following subroutine displays the current date in a message box

and can be called by its name, ShowDate():

Example:

 Sub ShowDate()

 MsgBox(Now().ToShortDateString)

 End Sub

1.14 CONTROLLING PROGRAM FLOW

 VB.NET provides a complete set of control structures for controlling

program flow:

1. Conditional processing

2. Flow control statement and

3. Loops

1. CONDITIONAL PROCESSING

 Conditional Processing tests an expression and executes code based on the

value of that expression.

If…. Then …. Else Statements

 The If… Then .. Else statement, which executes one block of statements

if the condition is True and, another if the condition is False.

 The syntax of the If… Then … Else statement is as follows:

SYNTAX:

If expression Then

.. Code to be Executed is expression is True ..

ElseIf expression Then

.. Code to be executed is expression is True

ElseIf expression Then

.. Code to be executed is expression is True Else

.. Code to be executed is expression is false

Endif

EXAMPLE

Dim myName As String = “ram"

If myName = "Fred" Then

MessageBox.Show("Hello

Fred")

 ElseIf myName = "John" Then

MessageBox.Show("Hello

John")

ElseIf myName = "Paul" Then

MessageBox.Show("Hello Paul")

Else

MessageBox.Show(“unnamed")

End If

Select Case Statement :

 Select Case construct is extremely useful if you need to evaluate a value or

expression against multiple possible outcomes.

 For example you might want to compare a string against a variety of other

strings in order to decide what action to take.

 The syntax for the Select Case construct is as follows:

Select Case expression

Case value1, value2, ...

...

Case value3, value3, ...

...

Case value1, value2, ...

...

End Select

EXAMPLE:

 The following code excerpt shows a Select Case construct which takes

specific action depended on the value of a String variable:

Dim strCity As String = "London“

Dim strCountry As String

Select Case strCity

Case "Paris"

strCountry = "France“

Case "London"

strCountry = "England“

Case "Berlin"

strCountry = "Germany"

End Select

MessageBox.Show("Welcome to " & strCountry)

2. FLOW CONTROL STATEMENTS

 VB.NET flow control statements can enable you to branch your code

unconditionally.

 There are two statements: Exit and Goto.

Exit statement:

 Use exit when you want to stop code execution within these code

structures based on some circumstances.

 Exit takes following keywords: Do, For, Sub, Function, property and Try

 The syntax for the Exit statement is −

Exit { Do | For | Function | Property | Select | Sub | Try | While }

Example:

Sub Main()

Dim a As Integer = 10

While (a < 20)

Console.WriteLine(a)

a = a + 1

If (a > 15) Then

'terminate the loop using

exit statement Exit While

End If

End While

Console.ReadLine()

End Sub

Goto Statement:

 GoTo statement provides a way for program execution to jump to

a labeled location in the code.

Example:

Private Sub ValidateValue(ByVal intValue As Integer) If intValue > 10 Then

GoTo EXIT_SUB

else ProcessValue(intValue)

MessageBox.Show("Valid Number Entered")

Endif

EXIT_SUB:

Exit Sub

End Sub

3. Loops

 Loops execute a block of code a predetermined number of times or until a

particular test condition has been met.

Do….. Loop Loops.

 A Do...Loop Until loop is a loop that runs until the loop's condition is true,

the condition being checked after each iteration of the loop.

Syntax:

Do

Loop code here Loop Until condition

EXAMPLE

Module loops

Sub Main()

Dim a As Integer = 10 Do

Console.WriteLine("value of a:{0}", a)

a = a + 1

Loop While (a < 20)

Console.ReadLine()

End Sub

End Module

Output: value of a: 10

value of a: 11

 value of a: 12

value of a: 13

value of a: 14

value of a: 15

 value of a: 16

value of a: 17

value of a: 18

value of a: 19

For …. Next Loops

 When the number of cycles is know before the loop is initiated, we can use

the For

Next statements.

 In this construct we declare a counter variable, which is automatically

increased or decreased in value during each repetition of the loop.

Syntax:

For

Loop code here

Next

EXAMPLE

Module Module1 Sub Main()

Dim I as interger =1

For i As Integer = 0 To 2

 Console.WriteLine("I: {0}", i)

Next

End Module

For Each statement

 The For Each construct simplifies traversing over collections of

data.

 It has no explicit counter.

 The For Each statement goes through the array or collection one by one and

the current value is copied to a variable defined in the construct.

Module Example

Sub Main()

Dim planets() As String = { "Mercury", "Venus“, "Earth", "Mars", "Jupiter",

"Saturn", "Uranus", "Neptune" }

For Each planet As String In planets

Console.WriteLine(planet)

Next

End Sub

End Module

 The usage of the For Each statement is straightforward.

 The planets is the array that we iterate through.

 The planet is a temporary variable that has the current value from the

array.

 The For Each statement goes through all the planets and prints them to

the console.

While ….. End While Loops

 The While statement is a control flow statement that allows code to be

executed repeatedly based on a given boolean condition.

 This is the general form of the While loop:

While (expression):

 statement

End While

 The While keyword executes the statements inside the block enclosed

by the While, End While keywords.

 The statements are executed each time the expression is evaluated to

true.

EXAMPLE

Module Example

Sub Main()

Dim i As Integer = 0

Dim sum As Integer = 0

While i < 10

i = i + 1

sum += I

End While

Console.WriteLine(sum)

End Sub

End Module

1.16 HANDLING ERRORS AND EXCEPTIONS

 Catching errors and other extraordinary conditions in code

has always been a problem for programmers.

 Often errors occur and go unnoticed during program

execution.

1. UNSTRUCTURED ERROR HANDLING:

 This is a simple and sometimes effective way to handle errors. It works

like this:

 You can call a function and check the return value.

 If the return value corresponds to a defined error result code, you can display

an error message or perform whatever action is appropriate for the type of

error that occurred.

EXAMPLE

 If totalline() = success then

 success=writetotal()

If succes then

 if sendnotice() then

‘some

else

 success = notify()

end if

end if

Else

‘error

End if

 To turn off unstructured error handling, you can use the On Error GoTo 0 or

On Error GoTo -1 statements (they do the same thing). Here's an example:

Sub Main()

On Error GoTo Handler

Dim intItem1 As Integer = 0

Dim intItem2 As Integer = 128

Dim intResult As Integer

intResult = intItem2 / intItem1

On Error GoTo 0

Console.WriteLine("Press Enter to continue...")

Console.ReadLine()

Exit Sub

Handler:

Console.WriteLine("An overflow error occurred.")

Resume Next

End Sub

2. STRUCTURED EXCEPTION HANDLING

 VB.NET utilizes the .NET Framework's standard mechanism for

error reporting, called Structured Exception Handling.

 It relies on exceptions to report errors that arise in

applications.

 Exceptions are classes that trap the error information.

 To utilize .NET's Structured Exception Handling mechanisms properly,

developers need to write smart code that watches out for exceptions and

implement code to deal with these exceptions.

 Structured exception handling provides the following

components in the code:

Try section: The block of code that may result in an exception and

always gets executed

Catch section: The block of code that attempts to act on an exception and is

only executed when an exception takes place

Finally section: The block of code intended to perform any kind of

clean up operation and always gets executed

THE TRY...CATCH BLOCK

 The purpose of the Try...Catch block is to allow catching errors and

specifying a resolution for them. The sample code looks like this:

Try

'Code to be executed

Catch

‘Error resolution code

End Catch

THE TRY...CATCH...FINALLY BLOCK

 The purpose of the Try...Catch...Finally block is to allow executing the

protected code under the Try section, acting on any errors that may arise in

the Catch block, and following up with the cleanup code in the Finally

block.

Try

'Code to be executed

Catch

'Error resolution code

Finally

'Cleanup code

End Catch

EXAMPLE

Try

Dim i As Integer = 0

Dim iresult As Integer

iresult = 1 / i

 Catch ex As Exception

MessageBox.Show(ex.ToString())

Finally

MessageBox.Show("finally block executed")

End Try

1.16 OBJECT ORIENTED PROGRAMMING

 .NET is fully object oriented platform that allow languages to take full

advantage of these OOP features. The features include: Namespace

 Classes

 Class Properties

 Constructors and destructors

 Inheritance

 Overriding

 Overloading

 Polymorphism

 Interfaces

CLASSES

 Class is nothing but a template or blue-print for an entity.

 For example you may have a class that represents real life entity - Employee.

 The class will provide properties (Name, Age...)

as well as actions (CalculateSalary,

GoOnLeave...) of the entity.

 Creating classes is similar to creating

namespaces.

[VB.NET]

 Public Class Class1

 ...

End Class

CLASS PROPERTIES

 Properties encapsulate data members of your class. Properties can be read-

write, read only or write only.

 Here is how you create read-write properties:

Public Class Employee

 private strName As String

Public Property Name As String

Get

return strName;

End

Get

Set(value As String) strName=value;

End Set

End Property

End Class

VB.NET uses Property keyword to declare properties.

 Property definition consists of two parts Get and Set. The get part

returns the property value and set part sets some private variable.

 The value in Set routine is received via implicit variable called value in

C#. VB.NET allows you to change this.

CONSTRUCTORS AND DESTRUCTORS

 Constructors used in a class are member functions to initialize or set the

objects of a class in VB.net.

 They don’t return any value and are defined in a Sub with a

keyword New.

 Multiple constructors can be created in class with any access specifiers, by

default constructors are of Public access type.

EXAMPLE

Public Sub New(ByVal setval As Integer)

a = setval

End Sub

Public Function disp()

Return a

End Function

 You can think of destructors as the opposite of constructors: Constructors

execute when objects are created, and Destructors execute when the

objects are destroyed.

 Destructors or finalizer is a method used to deallocate the resources of an

object that are no longer used, its invoked automatically by the VB.net

environment. The keyword Overrides is used with the Finalizer method.

Example:

Protected Overrides Sub Finalize()

Console.WriteLine("Calling Destructor")

End Sub

INHERITANCE

 One of the most important concepts in object-oriented

programming is that of inheritance.

 Inheritance allows us to define a class in terms of another class which makes

it easier to create and maintain an application.

 When creating a class, instead of writing completely new data members and

member functions, the programmer can designate that the new class should

inherit the members of an existing class.

 This existing class is called the base class, and the new class is referred to as

the derived class.

EXAMPLE

‘Base class

Class Shape

Dim width , height As Integer

Public Sub setWidheig(ByVal w As Integer, ByVal h As

Integer)

width = w

 height = h

End Sub

End Class

‘derived class

Class Rectangle : Inherits Shape

Public Function getArea() As Integer

Return (width * height)

End Function

End Class

OVERRIDING

 Overriding in VB.net is method by which a inherited property or a

method is overidden to perform a different functionality in a derived

class.

 The base class function is declared using a keyword Overridable and

the derived class function where the functionality is changed contains

an keyword Overrides.

EXAMPLE

Public Overridable Function add(x As Integer, y As Integer)

Console.WriteLine('Function Inside Base Class')

 Return (x + y)

 End Function

Inherits Over

Public Overrides Function add(x As Integer,y As Integer)

Console.WriteLine(MyBase.add(120, 100))

Console.WriteLine('Function Inside Derived Class')

Return (x + y)

End Function

OVERLOADING

 Method Overloading allows us to write different versions of a method (i.e. a

single class can contain more than one methods (Sub / Functions) of same

name but of different implementation).

 And compiler will automatically select the appropriate method based on

parameters passed.

Example:

Public Overloads

Function add(a As Long, b As Long)

WriteLine("You are in function add(long, long)") Return a + b

End Function

POLYMORPHISM

 Polymorphism is one of the crucial features of VB.NET, It means

"The ability to take on different form", It is also called as

Overloading which means the use of same thing for different

purposes.

 Using Polymorphism we can create as many functions we want with one

function name but with different argument list.

 The function performs different operations based on the argument list in

the function call.

 The exact function to be invoked will be determined by checking the

type and number of arguments in the function.

INTERFACE

 Interfaces in VB.net are used to define the class members using a keyword

Interface, without actually specifying how it should be implemented in a

Class.

 Intefaces are examples for multiple Inheritance and are implemented in the

classes using the keyword Implements that is used before any Dim statement

in a class.

Example

Public Interface Interface1

Function Add(ByVal x As Integer) As Integer

End Interface

1.17 MULTITHREADING

 A thread is basically a path of execution through a program. It is also the

smallest unit of execution that Win32 schedules.

 A thread consists of a stack, the state of the CPU registers

and an entry in the execution list of the system scheduler.

 Each thread shares all of the process's resources.

 A "process" is an executing instance of an application.

 For example, when you double-click the Notepad icon, you

start a process that runs Notepad.

 A "thread" is a path of execution within a process.

 When you start Notepad, the operating system creates a process

and begins executing the primary thread of that process.

 When this thread terminates, so does the process.

 This primary thread is supplied to the operating system by the startup code in

the form of a function address.

 All threads in . NET applications are represented by

System.Threading namespace.

 System.Threading provides classes and interfaces that

enable multithreaded programming.

 This namespace includes a ThreadPool class that manages groups of

threads, a Timer class that enables a delegate to be called after a

specified amount of time and a Mutex class for synchronizing

mutually exclusive threads.

 System.Threading also provides classes for thread

scheduling and wait notification.

 Each thread in a process operates independently.

 Unless you make them visible to each other, the threads

execute individually and are unaware of the other

threads in a process.

EXAMPLE

Dim thread As System.Threading.Thread

Private Sub countup()

Do Until i = 10000

i = i + 1

Label1.Text = i Me.Refresh()

Loop

 End Sub

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button1.Click

thread = New System.Threading.Thread(AddressOf countup)

thread.Start()

End Sub

Unit -2

2.1 The features of .NET

 The Microsoft .NET framework provides a lot of features.

 Microsoft has designed the features of the .NET framework by using the

technologies that are required by software developers to develop applications

for modern as well as future business needs.

 The key features of .NET are:

1. Common Executive Environment:-

 All .NET applications run under a common execution environment, called the

Common Language Runtime.

 The CLR facilitates the interoperability between different .NET languages

such as C#, Visual Basic, Visual C++, etc. by providing a common

environment for the execution of code written in any of these languages.

2. Common Type System:-

 CTS ensures that objects of the programs that are written in different

programming languages can communicate with each other to share data.

 The common type system CTS defines a set of types and rules that are

common to all languages targeted at the CLR.

 It supports both value and reference types.

3. Multi-language support:-

 .NET provides multi-language support by managing the compilers that are

used to convert the source to intermediate language (IL) and from IL to native

code, and it enforces program safety and security.

 The basis for multiple language support is the common type system and

metadata.

 The basic data types used by the CLR are common to all languages. There

are therefore no conversion issues with the basic integer, floating-point and

string types.

4. tool Support:-

 The CLR works hand-in-hand with tools like visual studio, compilers,

debuggers, and profilers to make the developer's job much simpler.

5. Security:-

 The CLR manages system security through user and code identity coupled

with permission checks.

 The identity of the code can be known and permission for the use of

resources granted accordingly.

 This type of security is a major feature of .NET.

6. Automatic Resource Management:-

 The .NET CLR provides efficient and automatic resource management such

as memory, screen space, network connections, database, etc.

 CLR invokes various built-in functions of .NET framework to allocate and

de-allocate the memory of .NET objects.

 Therefore, programmers need not write the code to explicitly allocate and de-

allocate memory to the program.

7. Easy and rich debugging support:-

 The .NET IDE (integrated development environment) provides an easy and

rich debugging support.

 Once an exception occurs at run time, the program stops and the IDE marks

the line which contains the error along with the details of that error and

possible solutions.

 The runtime also provides built-in stack walking facilities making it much

easier to locate bugs and error.

8. Simplified development:-

 With .NET installing or uninstalling, a window-based application is a matter

of copying or deleting files.

 This possible because .NET components are not referenced in the registry.

9. Framework class library:-

 The framework class library (FCL) of the .NET framework contains a rich

collection of classes that are available for developers to use these classes in

code Microsoft has developed these classes to fulfill various tasks of

applications.

 The classes in the FCL are logically grouped under various namespaces such

as system, System.collections, system.Globalization, system.IO, system.text

etc.

10. Portability:-

 The application developed in the .NET environment is portable. When the

source code of a program written in a CLR compliant language complies, it

generates a machine-independent and intermediate code.

 This was originally called the Microsoft Intermediate Language (MSIL) and

has now been renamed as the common Intermediate Language (CIL).

 CIL is the key to portability in .NET.

2.2 The anatomy of asp.net pages

1. The Code Structure of ASP.NET

 ASP.NET pages begin with a plain text file that has an .aspx extension.

 IIS uses this extension to identify particular files that contain executable code

and should be processed as ASP.NET pages.

 The contents of the .aspx file are called the page.

 The page consists of visual markup(HTML) and application logic (executable

code).

 ASP.NET also has the ability to store application code in separate files rather

than grouping it with HTML. This Concepts is called Code Behind.

 Example

<%@ Page Language="VB" AutoEventWireup="false"

CodeFile="Default.aspx.vb" Inherits="_Default" %> ------ 1

<html xmlns="http://www.w3.org/1999/xhtml" >

<body>

 <form id="form1" runat="server"> ------- 2

 <div>

 <asp:Label ID="Label2" runat="server" Text="Roll no">

</asp:Label> -------- 3

 This .aspx file contains Three new items of interest:

i. ASP.NET page directives (shown in line 1):

 Page directives provide ASP.NET with the information about the code

contained in the file.

 They can located anywhere in the file,but they are generally placed at the top.

ii. The runat=“Server” attributes (shown in line 2):

 Runat=“server” attributes instructs the page compiler to preprocess these

HTML elements on the server.

iii. Web Controls(Shown in line 3) :

 Web Controls are server side code pieces that perform a variety of functions.

 Web controls are user interface elements that interact with the server.

2. Execution Stages and State Management

 Web application use a request – response model of communication:

 The Web browser request a document from the web server and

 the web server responds with the data from that document.

 Web application also contain HTML forms, which allow for user input.

 The program is executed using the form data as input and the results are

returned to the browser as HTML. This Sequence of steps is referred to as

Round-Trip

 Many state Management tasks in ASP.NET are done for you and other state

management tasks can be accomplished in a number of ways.

 The ASP.NET web controls and HTML Controls can maintain their

associated values between round trip with any code is called view state.

 The view state hidden form field, which is automatically generated by

ASP.NET for every .aspx file that contain server side form.

3.Events model for the page class

 The page class contains events that fire when

1. The page loads into the browser and

2. When server code execution ends and page rendering has finished.

 These events are page_load and page_unload.

 You can specify event handling code for these events in your .aspx file.

Example

Sub page_load(sender as object,E as EventArgs)

 Label.text = “welcome”

End sub

Sub page_unload(sender as object,E as EventArgs)

 Label.text = “ ”

End sub

2.3 Introducing Web Forms

 Web Forms are pages that your users request using their browser.

 These pages can be written using a combination of HTML, client-script,

server controls, and server code.

 When users request a page, it is compiled and executed on the server by the

framework, and then the framework generates the HTML markup that the

browser can render.

 An ASP.NET Web Forms page presents information to the user in any

browser or client device.

 Using Visual Studio, you can create ASP.NET Web Forms.

 The Visual Studio Integrated Development Environment (IDE) lets you drag

and drop server controls to lay out your Web Forms page. You can then

easily set properties, methods, and events for controls on the page or for the

page itself.

 These properties, methods, and events are used to define the web page's

behavior, look and feel, and so on.

ASP.NET Web Forms are:

1. Based on Microsoft ASP.NET technology, in which code that runs on the

server dynamically generates Web page output to the browser or client

device.

2. Compatible with any browser or mobile device. An ASP.NET Web page

automatically renders the correct browser-compliant HTML for features such

as styles, layout, and so on.

3. Compatible with any language supported by the .NET common language

runtime, such as Microsoft Visual Basic and Microsoft Visual C#.

4. Built on the Microsoft .NET Framework. This provides all the benefits of the

framework, including a managed environment, type safety, and inheritance.

5. Flexible because you can add user-created and third party controls to them.

2.4 VS.NET Web Application and other IDE Basics

 VS.NET offers an easy way to create new ASP.NET web application

projects.

 You can create a new web application project in VS.NET by selecting

FILENewProject from the menu bar.

 Adding new web forms to the application is simple.

 In the Solution Explorer window right click on the icon in web application

and select AddAdd new item, the dialog box appear.

 In that select Add Web Form as shown below

 After select click ok button, then the form is add to the Solution Explorer

 Whenever you want to view the code or when you place a web control on the

webform for the first time,a new code module is added to the solution that

serves as the code behind module for the web form.

 Example

Partial Class _Default------1

 Inherits System.Web.UI.Page------2

Protected Sub Page_Load(ByVal sender As Object, ByVal e As

System.EventArgs) Handles Me.Load------3

 Clear()

End Sub

 Assign the class the same name given the web form as shown in line 1

 This class inherits from the page class as shown in line 2,which predefined

ASP.NET class.

 Inherited page event handlers defined for page_load in line 3.

2.5 Separating Content And Code – The Code Behind Feature

 VS.NET also offers many features to keep your code organized such as the

code behind features.

 Many programmers combined the two elements within the same file.

 The result was code base that are difficult to maintain and mixture of HTML

and script.

 The two files are linked together using a special page directive, code

behind,which defined in the .aspx file.

 Code behind specifies the pathname to a code module file.

 Example:

<%@ Page Language="VB" AutoEventWireup="false"

Codebehind=“samplewebbutton.vb"

Inherits=“webapplication1.samplewebbutton" %>

 You have other options when specifying a cade behind class.you may also

specify an src attribute,which tells ASP.NET where your class file is located.

 If omitted ASP.NET assumes that the class is located in /bin directory of web

application.

<%@ Page Language="VB" AutoEventWireup="false"

Src=“samplewebbutton.vb”

 Inherits=“webapplication1.samplewebbutton"

 %>

2.6 Application configuration

 Application in ASP.NET are comprised of a virtual web directory and pages

,file and assemblies contained within the directory and subdirectory.

 You can define setting for this application plus write event handlers for

application wide events.

 A special file called Global.asax file control this setting events.

Structure and configuration of the global.asax file

 The Global.asax file contain code that may compromise the security of the

web server.

 ASP.NET place restriction on the global.asax file,so that any direct HTTP

requests for it is automatically denied.

 When VS.NET creates a new web application,a Global.asax file is created

automatically.

 The Global.asax file contains a code behind file name Global.asax.vb

 Example:

<% Application codebehind = “Global.asax.vb” Inherits = “lab3_1.Global”

%>

The code behind file shown as

Import System.Web

Import System.Web.SessionState

 \\Public class Global

Inherits system.web.Httpapplicaion

2.7 Using HTml Controls

 The HTML server controls are HTML elements that include

a runat=server attribute. The HTML server controls have the same HTML

output and the same properties as their corresponding HTML tags. In

addition, HTML server controls provide automatic state management and

server-side events. HTML server controls offer the following advantages:

 The HTML server controls map one to one with their corresponding HTML

tags.

 When the ASP.NET application is compiled, the HTML server controls with

the runat=server attribute are compiled into the assembly.

 Most controls include an OnServerEvent for the most commonly used event

for the control. For example, the <input type=button> control has

an OnServerClick event.

 The HTML tags that are not implemented as specific HTML server controls

can still be used on the server side; however, they are added to the assembly

as HtmlGenericControl.

 When the ASP.NET page is reposted, the HTML server controls keep their

values.

 The System.Web.UI.HtmlControls.HtmlControl base class contains all of the

common properties. HTML server controls derive from this class.

1.HtmlAnchor Control

 Use the HtmlAnchor control to programmatically control an <a> HTML

element.

 The <a> HTML element allows you to create a hyperlink that allows you to

move to another location on the page or to another Web page.

 The HtmlAnchor control must be well formed with an opening and closing

tag. You can specify the caption for the control by placing text between the

opening and closing tags.

 Example:

 <a id="programmaticID" href="linkurl" name="bookmarkname“

runat="server" > linktext

2. HtmlButton Control

 Use the HtmlButton control to program against the

HTML <button> element. You can provide custom code for

the ServerClick event of the HtmlButton control to specify the action

performed when the control is clicked.

 The HTML 4.0 <button> element enables you to create buttons composed of

embedded HTML elements

 Creates a server-side control that maps to the <button> HTML element and

allows you create push buttons.

 Example: <button runat="server"> </button>

3. HtmlForm control

 Use the HtmlForm control to program against the HTML <form> element.

 To take advantage of the postback services, all Web Forms controls, whether

HTML, Web, pagelet, or custom, must be nested between well-formed

opening and closing tags of the HtmlForm control.

 If the tags are not closed properly, ASP.NET will not recognize the element.

 By default, the HtmlForm control's method attribute is set to POST.

 Example

<form id="programmaticID" method=POST | GET action="srcpageURL"

runat="server" > Other controls, input forms, and so on.

</form>

 You can customize the method attribute to suit your needs, but setting

the method attribute to a value other than GET or POST can break the built-

in view state and post back services provided by the Web Forms.

4. HtmlImage control

 Use the HtmlImage control to program against the HTML element.

 This control allows you to dynamically set and retrieve the image's source,

width, height, border width, alternate text, and alignment by using

the Src, Width, Height, Border, Alt, and Align properties, respectively.

 Creates a server-side control that maps to the HTML element and

allows you to display an image.

 Example

<img id="programmaticID"

 alt="alttext“

https://msdn.microsoft.com/en-us/library/cc425458(v=vs.71)

 align= top | middle | bottom | left | right border="borderwidth"

 height="imageheight"

 src="imageURL"

 width="imagewidth"

 runat="server" >

2.7 Using HTml Controls

 The HTML server controls are HTML elements that include

a runat=server attribute. The HTML server controls have the same HTML

output and the same properties as their corresponding HTML tags. In

addition, HTML server controls provide automatic state management and

server-side events. HTML server controls offer the following advantages:

 The HTML server controls map one to one with their corresponding HTML

tags.

 When the ASP.NET application is compiled, the HTML server controls with

the runat=server attribute are compiled into the assembly.

 Most controls include an OnServerEvent for the most commonly used event

for the control. For example, the <input type=button> control has

an OnServerClick event.

 The HTML tags that are not implemented as specific HTML server controls

can still be used on the server side; however, they are added to the assembly

as HtmlGenericControl.

 When the ASP.NET page is reposted, the HTML server controls keep their

values.

 The System.Web.UI.HtmlControls.HtmlControl base class contains all of the

common properties. HTML server controls derive from this class.

1.HtmlAnchor Control

 Use the HtmlAnchor control to programmatically control an <a> HTML

element.

 The <a> HTML element allows you to create a hyperlink that allows you to

move to another location on the page or to another Web page.

 The HtmlAnchor control must be well formed with an opening and closing

tag. You can specify the caption for the control by placing text between the

opening and closing tags.

 Example:

 <a id="programmaticID" href="linkurl" name="bookmarkname“

runat="server" > linktext

2. HtmlButton Control

 Use the HtmlButton control to program against the

HTML <button> element. You can provide custom code for

the ServerClick event of the HtmlButton control to specify the action

performed when the control is clicked.

 The HTML 4.0 <button> element enables you to create buttons composed of

embedded HTML elements

 Creates a server-side control that maps to the <button> HTML element and

allows you create push buttons.

 Example: <button runat="server"> </button>

3. HtmlForm control

 Use the HtmlForm control to program against the HTML <form> element.

 To take advantage of the postback services, all Web Forms controls, whether

HTML, Web, pagelet, or custom, must be nested between well-formed

opening and closing tags of the HtmlForm control.

 If the tags are not closed properly, ASP.NET will not recognize the element.

 By default, the HtmlForm control's method attribute is set to POST.

Example

<form id="programmaticID" method=POST | GET action="srcpageURL"

runat="server" > Other controls, input forms, and so on.

</form>

 You can customize the method attribute to suit your needs, but setting

the method attribute to a value other than GET or POST can break the built-

in view state and post back services provided by the Web Forms.

https://msdn.microsoft.com/en-us/library/cc425458(v=vs.71)

4. HtmlImage control

 Use the HtmlImage control to program against the HTML element.

 This control allows you to dynamically set and retrieve the image's source,

width, height, border width, alternate text, and alignment by using

the Src, Width, Height, Border, Alt, and Align properties, respectively.

 Creates a server-side control that maps to the HTML element and

allows you to display an image.

Example

<img id="programmaticID"

 alt="alttext“

 align= top | middle | bottom | left | right border="borderwidth"

 height="imageheight"

 src="imageURL"

 width="imagewidth"

 runat="server" >

5. HtmlGenericControl

 Created on the server in response to tags that include

the runat="server" attribute/value pair in elements that do not map directly

to a specific HTML control.

 These elements include the , <body>, <div>, and elements,

among others.

 Creates a server-side control that maps to an HTML element not represented

by a specific .NET Framework class, such as <body> and <div>.

 Syntax:

Contentbetweentags

 Example :

 Hai

6. HtmlInputButton Control

 Use the HtmlInputButton control to program against the <input

type=button>, <input type=submit>, and <input type=reset> HTML

elements.

 When a user clicks an HtmlInputButton control, input from the form that

the control is embedded on is posted to the server and processed.

 Syntax:

 <input type=button | submit | reset id="programmaticID"

OnServerClick="onserverclickhandler" runat="server" >

 Example:

 <input Type="Submit" Name="AddButton Value="Add"

OnServerClick="AddButton_Click" runat="server"/>

7. HtmlInputCheckBox Control

 Use the HtmlInputCheckBox control to program against the <input

type=checkbox> HTML element.

 The HtmlInputCheckBox control does not post back to the server when it is

clicked.

 The state of the check box is sent to the server for processing when you use a

control that posts back the server, such as the HtmlInputButton control.

 To determine whether the check box is selected, test the Checked property

of the control.

 Syntax:

 <input type=checkbox id="programmaticID" checked runat="server" >

 The following example demonstrates how to create

an HtmlInputCheckBox control that allows the user to select

a true or false state.

 <input id="Check1" type=checkbox runat="server" checked/> CheckBox1

8. HtmlInputFile Control

 Use the HtmlInputFile control to program against the HTML <input

type=file> element. You can use the HtmlInputFile control to easily design

a page that allows users to upload binary or text files from a browser to a

directory that you designate on your Web server.

 Syntax:

 <input type=file id="programmaticID“ maxlength="maxfilepathlength"

size="widthoffilepathtextbox" postedfile="uploadedfile" runat="server" >

 Example:

 <h1>ASP.NET File Upload Example</h1>

 Select File To Upload to Server:

<input id="MyFile" type="file" runat="server">

9. HtmlInputHidden Control

 Use the HtmlInputHidden control to program against the <input

type=hidden> HTML element.

 Although this control is part of the form, it is never displayed on the form.

 Creates a server-side control that maps to the <input type=hidden> HTML

element and allows you to store information in a nonviewable control on the

form.

 Syntax:

 <input type="hidden" id="programmaticID" value="contentsofhiddenfield"

runat="server" >

 Example:

 <input id="HiddenValue" type=hidden value="Initial Value"

runat="server">

10. HtmlInputImage Control

 Use the HtmlInputImage control to program against the HTML <input

type=image> element. You can use this control in conjunction with

the HtmlInputText, HtmlTextArea, and other controls to construct user

input forms.

 This control offers an alternative for browsers that do not support DHTML

and the HtmlButton control.

 Creates a server-side control that maps to the <input type=image> HTML

element and allows you to create an button that displays an image.

 Syntax:

<input type=image id="programmaticID" src="imagepath"

align="imagealignment" alt="alttext" OnServerClick="onserverclickhandler"

width="borderwidthinpixels" runat="server" >

 Example:

<input type=image id="InputImage2" src="/images/mango.jpg"

onmouseover="this.src='/images/banana.jpg';"

onmouseout="this.src='/images/mango.jpg';"

OnServerClick="Button2_Click" runat="server">

11. HtmlInputRadioButton Control

 Use the HtmlInputRadioButton control to program against the

HTML <input type=radio> element.

 You can group multiple HtmlInputRadioButton controls together by setting

the Name property to a value that is common to all <input

type=radio> elements within the group.

 Radio buttons in the same group are mutually exclusive; only one radio

button in the group can be selected at a time.

 Syntax:

<input type=radio id="programmaticID" checked name="radiobuttongroup"

runat="server" >

 Example:

 <input type="radio" id="Radio1" name="Mode" checked runat="server"/>

Option 1

 <input type="radio1" id="Radio2" name="Mode1" checked

runat="server"/> Option 2

12. HtmlInputText Control

 Use the HtmlInputText control to run server code against

the <input type=text> and <input type=password> HTML elements.

 As with standard HTML, these controls can be used to enter user names and

passwords in HTML forms.

 You can use this control in conjunction with

the HtmlInputButton, HtmlInputImage, or HtmlButton control to process

user input on the server.

 Creates a server-side control that maps to the <input type=text> and <input

type=password> HTML elements and allows you to create a single line text

box to receive user input.

 Syntax:

 <input type=text | password id="programmaticID"

maxlength="max#ofcharacters" size="widthoftextbox"

value="defaulttextboxcontents" runat="server" >

 Example:

 <input ID="Value1" Type="Text" Size="2" MaxLength="3" Value="1"

runat="server"/>

 <input ID="Value1" Type=“password" Size=“4" MaxLength=“8“

runat="server"/>

13. HtmlSelect Control

 Use the HtmlSelect control to program against the HTML <select> element.

By default, this control renders as a drop-down list box.

 To determine the selected item from a single selection HtmlSelect control,

first use the SelectedItem property to obtain the index of the selected item.

You can then use this index to retrieve the selected item from

the Items collection.

 Creates a server-side control that maps to the <select> HTML element and

allows you to create a list control.

 Syntax:

 <select id="programmaticID“ Value="currentitemvalue" runat="server" >

<option>value1</option> <option>value2</option> </select>

 Example:

 <select id="ColorSelect" runat="server"> <option>SkyBlue</option>

<option>LightGreen</option> <option>Gainsboro</option>

<option>LemonChiffon</option> </select>

2.8 Using web Controls

 Web Controls provide richer functionality than their HTML control counter

parts.

 By using Web controls instead of HTML controlsin functionality and visual

appearance defintion are gained.

1. Shared web controls:

 All the ASP.NET web controls share rich formatting options.Some of

characteristics you can programmatically adjust include color,border

styles,fonts,text styles and many more shared web control properties are

listed below:

Web Controls for displaying and formatting data

 Display controls simply render text or images to the browser.

 The following are control used to display the data:

1. Label  Displays the text specified in the control's Text property.

2. Panel  Groups a set of controls (like a Frame control in Windows).

3. Table  Displays a table of information. This control has two collections:

TableRows, which contains the rows, and TableCells, which contains the

columns in a row.

4. TableCell  Represents a cell in a row of a Table control.

5. TableRow Represents a row inside a Table control.

1. Label control

 The Label control represents a standard Windows label.

 It is generally used to display some informative text on the GUI which is not

changed during runtime.

 Let's create a label by dragging a Label control from the Toolbox and

dropping it on the form.

 Properties of the Label Control:

The following are some of the commonly used properties of the Label control

–

 Events of the Label Control:

The following are some of the commonly used events of the Label control

Example:

 <asp:label id="Label1“ borderstyle="solid" bordercolor="Green"

runat="Server" />

 Private Sub Label1_Click(sender As Object, e As EventArgs) _ Handles

Label1.Click

 Label1.Text = "You have just moved the label" End Sub

2.The Panel Control

 The Panel control works as a container for other controls on the page. It

controls the appearance and visibility of the controls it contains. It also allows

generating controls programmatically.

 The basic syntax of panel control is as follows:

 <asp:Panel ID= "Panel1" runat = "server"> </asp:Panel>

 The Panel control is derived from the WebControl class.

 Hence it inherits all the properties, methods and events of the same.

 It does not have any method or event of its own.

 However it has the following properties of its own:

Working with the Panel Control:

 Let us start with a simple scrollable panel of specific height and width and a

border style. The ScrollBars property is set to both the scrollbars, hence both

the scrollbars are rendered.

 The source file has the following code for the panel tag:

 <asp:Panel ID="Panel1" runat="server" BorderColor="#990000"

BorderStyle="Solid" Borderstyle="width:1px" Height="116px"

ScrollBars="Both" style="width:278px">

 This is a scrollable panel.

 <asp:Button ID="btnpanel" runat="server" Text="Button"

style="width:82px" /> </asp:Panel>

 The panel is rendered as follows:

3.The table, Tablerow and table cell controls

 The Table Web server control enables you to create tables on ASP.NET

pages that you can program in server code.

 The TableRow and TableCell Web server controls provide a way to display

the content for the Table control.

 The Table control acts as a parent control for TableRow controls.

 The table supports a property named Rows that is a collection

of TableRow objects.

 By adding or deleting items in this collection, you specify the rows for the

table.

 The TableRow control in turn supports a collection named Cells that

contains TableCell objects.

 The content to be displayed in the table is added to the TableCell control. The

cell has a Text property that you set to any HTML text. Alternatively, you

can display controls in the cell by adding controls to the cell's Controls

collection.

https://msdn.microsoft.com/en-us/library/f95z9zd0(v=vs.100)
https://msdn.microsoft.com/en-us/library/1c0ts6xx(v=vs.100)
https://msdn.microsoft.com/en-us/library/40tawese(v=vs.100)
https://msdn.microsoft.com/en-us/library/f95z9zd0(v=vs.100)
https://msdn.microsoft.com/en-us/library/f95z9zd0(v=vs.100)
https://msdn.microsoft.com/en-us/library/1c0ts6xx(v=vs.100)
https://msdn.microsoft.com/en-us/library/8wzys504(v=vs.100)
https://msdn.microsoft.com/en-us/library/1c0ts6xx(v=vs.100)
https://msdn.microsoft.com/en-us/library/1c0ts6xx(v=vs.100)
https://msdn.microsoft.com/en-us/library/ee6265t8(v=vs.100)
https://msdn.microsoft.com/en-us/library/40tawese(v=vs.100)
https://msdn.microsoft.com/en-us/library/40tawese(v=vs.100)
https://msdn.microsoft.com/en-us/library/bh91a30a(v=vs.100)

 Example

<asp:Table runat="server" CellPadding="5"

GridLines="horizontal" HorizontalAlign="Center">

 <asp:TableRow>

 <asp:TableCell>1</asp:TableCell>

 <asp:TableCell>2</asp:TableCell>

 </asp:TableRow>

 <asp:TableRow>

 <asp:TableCell>3</asp:TableCell>

 <asp:TableCell>4</asp:TableCell>

 </asp:TableRow>

</asp:Table>

Output:

2.10 web Controls for creating buttons

 Whenever you need the server to respond to a user click,use one of the button

web controls.

 Which button you use depends on the design requirements of your site.

 Buttons can be graphics image,a hyperlink or a regular push button.

 The following are list of buttons used in ASP.NET:

1. The Button Control

2. The Image Button Control

3. The Link Button Control

1.The Button Control

 The Button control is used to display a push button. The push button may be

a submit button or a command button. By default, this control is a submit

button.

 A submit button does not have a command name and it posts the page back to

the server when it is clicked. It is possible to write an event handler to control

the actions performed when the submit button is clicked.

 A command button has a command name and allows you to create multiple

Button controls on a page. It is possible to write an event handler to control

the actions performed when the command button is clicked.

 The example below demonstrates a simple Button control:

 <asp:Button id=“Btnsubmit" Text="Submit" runat="server“ />

 The Button control have the following Event handling:

1. Click

2. Command

3. Data Binding

4. Load

5. Unload

2.The Image Button Control

 ImageButton control in ASP.Net is used in button formation by which we can

use the images.

 It is like a button with an image on it. Generally, we have seen the images on

the website and after clicking on it, certain activities performed.

 So, in this case, we need to use Image Button control.

 It is used to fire an event after clicking on the Image Button either on the

client or server-side.

 We can set the image, which we want on the button.

 This image button will respond to the mouse click as soon as we click.

 When we click the image button control, it raises both the events that click

and command events.

 The example source code to design the image button is:

 <asp:ImageButton ID="ImageButton1" runat="server"

ImageUrl="~\Educba.png" Height="64px" Width="158px" Imagealign=“Left” />

3.The link button

 LinkButton server control displays a hyperlink styled button on the web

page.

 the LinkButton control which is run at the server and the generated HTML

code is returned as a response to the browser.

 The LinkButton control generates the HTML anchor (hyperlink) element. It

lets the users navigate to a section within the page or to another page.

 The LinkButton control looks like a hyperlink on the web page and functions

as a button.

 This makes it a very useful control.

 The example source code to design the Link button is:

 <asp:LinkButton ID="linkButtonId" runat="server">

 DisplayText

</asp:LinkButton>

 Example program using button controls

<body>

 <form id="form1" runat="server">

 <div>

 <asp:Label ID="lbldisplay" runat="server" ></asp:Label>

 <asp:Button ID="button" runat="server" Text="Submit" />

 <asp:ImageButton ID="ImageButton1" runat="server" Height="100px"

ImageUrl="~/button.jpg"

 Width="100px" />

 <asp:LinkButton ID="lbbutton" runat="server">Submit</asp:LinkButton>

 </div>

 </form>

</body>

Protected Sub button_Click

 lbldisplay.Text = "Button clicked"

 End Sub

 Protected Sub lbbutton_Click

 lbldisplay.Text = "Link Button clicked"

 End Sub

 Protected Sub ImageButton1_Click

 lbldisplay.Text = "Image Button clicked"

 End Sub

2.11 Web control for Inputting text

 Textbox control is most usable web server control in asp.net.

 TextBox control is a rectangular box which is used to take user to input.

 In simple word the TextBox is a place where user can input some text on

asp.net web form.

 To use TextBox on page we can write code or just drag and drop from

toolbox.

 Example: <asp:TextBox ID="txtusername" runat="server"></asp:TextBox>

 All server side control has its own properties and events. below list shows

textbox properties.

 All server side control has its own properties and events. below list shows

textbox properties.

The example source code to design the Text box is:

 <table>

 <tr>

 <td <asp:Label ID="lblusername" runat="server"

Text="Username"></asp:Label>

 </td>

 <td>

 <asp:TextBox ID="txtusername" runat="server"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>

 <asp:Label ID="lblpassword" runat="server"

Text="Password"></asp:Label>

 </td>

 <td>

 <asp:TextBox ID="txtpassword" runat="server" ></asp:TextBox>

 </td>

</tr>

</table>

2.15 ASP.NET Page Directives

 Page directives control setting for the code compiler like page settings and

namespaces to import into page.

 Each of the page directives can have several different attributes associated

with it.

 The attributes usually set what language to use for the page and what class to

use for the code behind file.

 For example

 <%@ Page Language="VB“ CodeFile="Default.aspx.vb"

Inherits="_Default" %>

1.The page and control directives

 The most commonly used directive is the @ Page directive and it can be used

only in Web Forms.

 Page directive allows you to specify many configuration options for the page.

By default, Visual Studio creates a page directive as shown below:

 <%@ Page Language="VB“ CodeFile="Default.aspx.vb"

Inherits="_Default" %>

 You can include only one @ Page directive in your .aspx file.

 Also you should specify one language in the Language attribute.

 This can be any .NET Framework-supported language, including VB.Net,

C#, or JScript.

 AutoEventWireup controlled the automatic binding of page events based on

the method naming convention.

 CodeFile specifies a path to the referenced code-behind file for the page.

 Inherits defines the name of the class from which to inherit. This can be any

class derived from the Page class

2. Different types of directives in Asp.Net

 @ Assembly

 The @Assembly Directive attaches assemblies to the page or an

ASP.NET user control thereby all the assembly classes and interfaces are

available to the class.

 @ Control

 Defines control-specific attributes used by the ASP.NET page parser

and compiler and can be included only in .ascx files (user controls).

 @ Import

 The Import directive imports a namespace into a web page, user

control page of application. If the Import directive is specified in the

global.asax file, then it is applied to the entire application.

 @ OutputCache

 The OutputCache directive controls the output caching policies of a

web page or a user control.

 @ Page

 The @Page directive enables you to specify attributes and values for an

Asp.Net Page to be used when the page is parsed and compiled

Attributes used for page and control directives

3.The @import Directives

 The Import directive imports a namespace into a web page, user control page

of application.

 If the Import directive is specified in the global.asax file, then it is applied to

the entire application.

 If it is in a page of user control page, then it is applied to that page or control.

 The basic syntax for import directive is:

<%@ Import namespace="System.Drawing" %>

<%@import namespace=“YourNamespace" %>

<%@import namespace=“System.Net.Sockets" %>

 4.The Register Directive

 The Register derivative is used for registering the custom server controls and

user controls.

 The basic syntax of Register directive is:

 <%@ Register Src="~/footer.ascx" TagName="footer"

TagPrefix="Tfooter" %>

 The TagPrefix attributes sets an alies for a namespace.

 The Tag name attributes specifies an alies to use for a class

 Namespace is the namespace to associate with the specified tag prefix.

5. The Assembly Directive

 The Assembly directive links an assembly to the page or the application at

parse time.

 This could appear either in the global.asax file for application-wide linking,

in the page file, a user control file for linking to a page or user control.

 The basic syntax of Assembly directive is:

 <%@ Assembly Name ="myassembly" %>

 The attributes of the Assembly directive are:

6. The OutputCache Directive

 The OutputCache directive controls the output caching policies of a web page

or a user control.

 The basic syntax of OutputCache directive is:

<%@ OutputCache Duration="15" VaryByParam="None" %>

 Duration is measured in seconds.

 This is the length of time during which the output cache for the page is kept

active

Vary is a comma separated list of HTTP headers used to vary output cache.

2.15 ASP.NET Rich Controls

 These web controls, which are sometimes referred to as rich controls, use

dynamic HTML and client side script when appropriate to provide better user

interaction.

 ASP.NET provides large set of controls. These controls are divided into

different categories, depends upon their functionalities.

 The followings control comes under the rich controls category.

 1. Calendar control

 2. AdRotator Control

1. Calendar control

 By far the most complex server control in ASP.NET is the Calendar control.

This creates a fully interactive one-month-at-a-time calendar as an HTML

table.

 the default output from the Calendar control, and you can see that it really is

a rich control in that it saves an incredible amount of effort on behalf of the

developer.

 The code used for inserting the control into the source of the page is:

 <ASP:Calendar id="MyControl" runat="server" />

 Notice that it automatically defaults to the current date ,if you don't specify a

date.

 If you scroll to the bottom of this page, you can see some of the properties

that can be set to change the appearance.

You can write an event handler for the SelectionChanged event, and obtain

the date that the user selected by querying the SelectedDate property of the

control within that event handler.

2. AdRotator control

 The AdRotator control randomly selects banner graphics from a list, which is

specified in an external XML schedule file. This external XML schedule file

is called the advertisement file.

 The AdRotator control allows you to specify the advertisement file and the

type of window that the link should follow in the AdvertisementFile and the

Target property respectively.

 The basic syntax of adding an AdRotator is as follows:

 <asp:AdRotator runat = "server" AdvertisementFile = "adfile.xml" Target =

"_blank" />

 The advertisement file is an XML file, which contains the information about

the advertisements to be displayed.

 XML is not a language in itself, like HTML, but a set of rules for creating

new markup languages. It is a meta-markup language.

 It allows developers to create custom tag sets for special uses. It structures,

stores, and transports the information.

 Following is an example of XML file:

 <BOOK>

 <NAME> Learn XML </NAME>

 <AUTHOR> Samuel Peterson </AUTHOR> <PUBLISHER> NSS

Publications </PUBLISHER> <PRICE> $30.00</PRICE>

 </BOOK>

 The following are properties of adrotator control:



Example:

 <Ad> <ImageUrl>rose2.jpg</ImageUrl> <NavigateUrl>

 http://www.babybouquets.com.au

</NavigateUrl>

 <AlternateText>

 Order roses and flowers

</AlternateText> <Impressions>20</Impressions>

<Keyword>gifts</Keyword>

</Ad>

2.16 Validation Controls

 ASP.Net provides various validation controls that validate the user data to

ensure that the data entered by the user are satisfied with the condition.

 The following are the list of validations:

1. The BaseValidator Class

2. RequiredFieldValidator

3. RangeValidator

4. RegularExpressionValidator

5. CompareValidator

6. CustomValidator

1. The BaseValidator Class

 All the validation controls in ASP.Net inherit the properties and methods of

the BaseValidator class.

 It helps in making a generic suite of validation controls. The important

properties and methods of the BaseValidator class are:

 ControlToValidate – It indicates the input control to validate. It must be a

unique value throughout the form.

 Enabled – It enables or disables the validator.

 Text – It holds the message to be displayed in the event of a validation

failure.

 ErrorMessage – The value in this attribute is displayed either when

ValidationSummary control is used or when Text property is missing.

 IsValid – A Boolean attribute which indicates whether the control is valid or

not.

 Validate() – This method revalidates the control and updates the IsValid

2. RequiredFieldValidator

 This is an elementary validation control. Almost all the forms have some

fields that are mandatory to be filled up by the user before proceeding

forward. The Required Field Validator ensures that such fields are not left

empty.

 Syntax:

 <asp:RequiredFieldValidator

 ID="someUniqueId"

runat="server“

 ControlToValidate ="someUniqueControlId"

ErrorMessage="ErrorToDisplayOnValidationFailure“>

</asp:RequiredFieldValidator>

3. RangeValidator

 The RangeValidator control simply specifies the permitted range within

which the input value should fall. This is most helpful for numeral input

values such as age or for Date input values.

 Syntax:

 <asp:RangeValidator ID="some unique id"

runat="server"

 ControlToValidate ="someUniqueControlId"

ErrorMessage="ErrorToDisplayOnValidationFailure"

Type="Integer" MinimumValue=”0” MaximumValue=”100”>

</asp:RangeValidator>

4. RegularExpressionValidator

 RegularExpressions, or simply Regex, are patterns that define the format of

the text. If the text is in the same format, Regex returns true, else false.

 It is recommended to read about Regex if you are not familiar with it. This

will also give you an idea about how Regex patterns are formed and how to

decipher a Regex pattern.

 Thus, a RegularExpressionValidator is a very versatile validation control. It

matches the input text against the pattern specified in the

ValidationExpression property.

 Syntax:

 <asp:RegularExpressionValidator ID="someUniqueId"

runat="server"

 ControlToValidate ="someUniqueControlId“

ErrorMessage="ErrorToDisplayOnValidationFailure"

ValidationExpression=”aRegexPattern”>

</asp:RegularExpressionValidator>

 Regex pattern can be ^[a-z][0-9]. This indicates that a text must start with an

alphabet and follow by a numeral.

5. CompareValidator

 The CompareValidator control compares the value of one control with either

a fixed value or a value in another control.

 Syntax

 <asp:CompareValidator ID="someUniqueId"

runat="server"

 ControlToValidate ="someUniqueControlId"

ErrorMessage="ErrorToDisplayOnValidationFailure"

Type="string" ControlToCompare=”ControlToValidateId”>

</asp:CompareValidator>

 ControlToCompare – It holds the ControlToValidate Id of another form of

control. The value of both the form fields is then compared.

6. CustomValidator

 ASP.Net also allows the freedom of writing your own validator.

 It also allows putting more complex validations in place.

 Validations that are business or application-specific can be written using

custom validators.

 The custom validation code is written in a function in the code-behind page

and the function name is passed as an attribute to the CustomValidator class.

 Custom validation can be done either at the client-side or the server-side.

 Syntax

 <asp:CustomValidator ID="someUniqueId"

runat="server“

 ControlToValidate ="someUniqueControlId"

ErrorMessage="ErrorToDisplayOnValidationFailure"

ClientValidationFunction=”functionName”>

</asp:CustomValidator>

https://www.educba.com/ajax-in-asp-dot-net/
https://www.educba.com/ajax-in-asp-dot-net/

2.17 SAVING STATE WITH STATEBAG OBJECTS

 View State Object Special object to manage information for current web page

between different calls of same web page.

 A hidden variable called _VIEWSTATE is used to hold the values of

ViewState object and resubmit on every click.

 ViewState is enabled by default so if you view a web form page in

your browser you will see a line similar to the following near the form definition

in your rendered HTML:

<input type="hidden" name=" VIEWSTATE"

value="dDwxNDg5OTk5MzM7Oz7DblWpxMjE3ATl4Jx621QnCmJ2VQ==" />

For example:

 Create a web form having a login and password field and a login button.

 If login and password goes wrong for three times then disable button is given in the

login message "Your Account is Blocked"

VB code:

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As EventArgs)

Handles Button1.Click

If Not (TextBox1.Text = "abc" AndAlso

TextBox2.Text = "xyz") Then If ViewState("ec") IsNot

Nothing Then

count = Convert.ToInt32(ViewState("ec"))

End If

count += 1

ViewState("ec") = count

Label1.Text = "count is "

& count

If count = 3 Then

Button1.Enabled

= False

Label1.Text = "Your Account is blocked”

End If

End If

End Sub

2.18 ASP.NET Intrinsic Objects

 ASP.NET provides intrinsic objects to enable low-level access to the

Web application framework. With the help of these intrinsic objects,

you can work directly with the underlying HTTP streams, server,

session, and application objects. The intrinsic objects can be accessed

in a Web form through the properties of the Page class.

.Intrinsic Objects and Their Mappings to the Page Class Properties

Intrinsic Object

Property of the Page Class

Http Request Request

Http Response Response

Http Server Utility Server

Http Application State Application

Http Session State Session

Properties of the HttpRequest Class

Methods of the HttpRequest Class

The HttpServerUtility Object

The HttpServerUtility object contains utility methods and properties to work

with the Web server. It contains methods to enable HTML/URL encoding and

decoding, execute or transfer to an ASPX page, create COM components, and so

on.

 The Server property of the Page class provides access to the

HttpServerUtility object.

Properties of the HttpServerUtility Class

Property Description

Machine Name Returns the name of the server that hosts the Web application.

ScriptTime out Indicates the number of seconds that are allowed to elapse when
processing the request before a timeout error is sent to the client.

Methods of the HttpServerUtility Class

UNIT- 3

Using the .NET Framework Class Library

3.1 Common Features of the .NET Framework Class Library

 The Framework Class Library or FCL provides the system functionality in the .NET

Framework as it has various classes, data types, interfaces, etc. to perform multiple

functions and build different types of applications such as desktop applications, web

applications, mobile applications, etc.

 The Framework Class Library is integrated with the Common Language Runtime

(CLR) of the .NET framework and is used by all the .NET languages such as C#, F#,

Visual Basic .NET, etc

 The functionality of the Framework Class Library can be broadly divided

into three categories i.e utility features written in .NET, wrappers around the OS

functionality and frameworks.

 These categories are not rigidly defined and there are many classes that may fit into

more than one category.

https://www.geeksforgeeks.org/introduction-to-net-framework/
https://www.geeksforgeeks.org/introduction-to-net-framework/
https://www.geeksforgeeks.org/common-language-runtime-clr-in-c-sharp/
https://www.geeksforgeeks.org/common-language-runtime-clr-in-c-sharp/
https://www.geeksforgeeks.org/csharp-programming-language/

3.2 Using Data Collections (System.collections)

 Collections standardize the way of which the objects are handled by your program. In

other words, it contains a set of classes to contain elements in a generalized manner.

 With the help of collections, the user can perform several operations on objects like the

store, update, delete, retrieve, search, sort etc.

 C# divide collection in several classes, some of the common classes are shown below:

Below table contains the frequently used classes of the System.Collections namespace:

CLASS

NAME DESCRIPTION

ArrayList

It is a dynamic array means the size of the array is not fixed,

it can increase and decrease at runtime.

Hashtable

It represents a collection of key-and-value pairs that are

organized based on the hash code of the key.

Queue

It represents a first-in, first out collection of objects. It is

used when you need a first-in, first-out access of items.

Stack

It is a linear data structure. It follows LIFO(Last In, First

Out) pattern for Input/output.

3.3 Handling File Input/output and Directories (System.IO)

 The File class encapsulates various operations that can be performed on a single file,

such as creating,copying,deleting,moving and opening files.

https://www.geeksforgeeks.org/c-arraylist-class/
https://www.geeksforgeeks.org/c-hashtable-class/

 Many of the methods of the file class return special classes that are used to read and

write files.

 These are collectively known as stream classes.

 StreamReader is a class file which is designed for reading a line of information from

a text file and it is inherited from the abstract base class TextReader and this base

class represents a reader, which can read a sequential series of characters.

 The StreamWriter class is used to write data or information to the text file. It is a

class file which is inherited from the abstract class TextWriter which can write a

sequential series of characters.

 Here are some commonly used reader and writer classes:

 BinaryReader and BinaryWriter – for reading and writing primitive data types as

binary values.

 StreamReader and StreamWriter – for reading and writing characters by using an

encoding value to convert the characters to and from bytes.

 StringReader and StringWriter – for reading and writing characters to and from

strings.

 TextReader and TextWriter – serve as the abstract base classes for other readers

and writers that read and write characters and strings, but not binary data.

1. Reading Text Files

 StreamReader type derives from a base class named TextReader.

 Let us see some of the main members of the abstract class TextReader.

 Read() -- Reads data from an input stream.

 ReadLine() -- Reads a line of characters from the current stream and returns

the data as a string.

 ReadToEnd() -- Reads all characters to the end of the TextReader and

returns them as one string.

2. Writing Text Files

 StreamWriter type derives from a base class named TextWriter. This class defines

members that allow derived types to write textual data to a given character stream.

 Let us see some of the main members of the abstract class TextWriter.

 close() -- Closes the Writer and frees any associated resources.

 Write() -- Writes a line to the text stream, with out a newline.

 WriteLine() -- Writes a line to the text stream, with a newline.

 Flush() -- Clears all buffers.

Example:

using System;

using System.Data;

using System.Configuration;

https://docs.microsoft.com/en-us/dotnet/api/system.io.binaryreader
https://docs.microsoft.com/en-us/dotnet/api/system.io.binarywriter
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter
https://docs.microsoft.com/en-us/dotnet/api/system.io.stringreader
https://docs.microsoft.com/en-us/dotnet/api/system.io.stringwriter
https://docs.microsoft.com/en-us/dotnet/api/system.io.textreader
https://docs.microsoft.com/en-us/dotnet/api/system.io.textwriter

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.IO;

public partial class ReadWriteFile : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 protected void btnReadFile_Click(object sender, EventArgs e)

 {

 //Reading from File1

 TextReader tr = new StreamReader(Server.MapPath("File-1.txt"));

 Label1.Text = tr.ReadLine();

 Label1.Text += tr.ReadToEnd();

 tr.Close();

 }

 protected void btnWriteFile_Click(object sender, EventArgs e)

 {

 //Writing into File2

 TextWriter tw = new StreamWriter(Server.MapPath("File-2.txt"));

 tw.WriteLine("Cherukuri Venkateswarlu");

 tw.Close();

 }

}

3.4 Watching the File System for Changes (System.IO.FileSystemWatcher)

 The FileSystemWatcher class in the System.IO namespace can be used to monitor

changes to the file system.

 It watches a file or a directory in your system for changes and triggers events when

changes occur.

 In order for the FileSystemWatcher to work, you should specify a directory that

needs to be monitored.

 The FileSystemWatcher raises the following events when changes occur to a

directory that it is monitoring.

 Changed: This event is triggered when a file or a directory in the path being

monitored is changed

 Created: This event is triggered when a file or a directory in the path being

monitored is created

 Deleted: This event is triggered when a file or a directory in the path being

monitored is deleted

 Error: This event is triggered there is an error due to changes made in the path

being monitored

 Renamed: This event is triggered when a file or a directory in the path being

monitored is renamed

Creating a simple file system watcher in C#

 You can build a Windows Service that uses the FileSystemWatcher class and sends

out notifications as and when changes occur to the path being watched.

 The following code snippet shows how the MonitorDirectory method would look

like.

 This method would be used to monitor a particular directory and raise events

whenever a change occurs. The directory path is passed as an argument to the

method.

 Example:

private static void MonitorDirectory(string path)

 {

 FileSystemWatcher fileSystemWatcher = new FileSystemWatcher();

 fileSystemWatcher.Path = path;

 fileSystemWatcher.Created += FileSystemWatcher_Created;

 fileSystemWatcher.Renamed += FileSystemWatcher_Renamed;

 fileSystemWatcher.Deleted += FileSystemWatcher_Deleted;

 fileSystemWatcher.EnableRaisingEvents = true;

 }

3.5 Using the Windows Event Log

 It's common for server software to persistently record information about what

it's

doing. This activity is called logging.

 It's common for programmers to spend time creating logging features in the

applications they write— both as a debugging tool and as a way for users and system.

 Programmers typically don't create their own logging facilities in

the applications they create, because the operating system

provides one for them: the Windows event log.

 The Windows event log is a central, system-managed place where

any application, service, or device can log information.

 It is available on Windows NT and Windows 2000.

 Logged events usually contain status information or failure

messages.

 You are free to use the event log from any of your applications,

including ASP.NET applications, as a way of persistently storing

information pertaining to your application's behavior in a way that's

easy for system administrators to access.

Using the EventLog Class

 Any application, including ASP.NET applications, can access the

event log.

 Your applications will write information to the application log

(rather than to the security or system logs).

 The .NET framework provides a class for handling the event

log. This is the EventLog class, found in System.Diagnostics.

 To send information to the application log, you use the

EventLog class.

 This class is created for you automatically, so you do not need

to instantiate it (although you can if you need to).

 Event sources must be registered before you write information to the

log.

 You do this by calling the CreateEventSource method of the

EventLog object writing an event to the Event Log Void

Button1_Click(Object Sender, EventArgs e)

{

if(!EventLog.SourceExists("MyApp"))

{

 EventLog.CreateEventSource("MyApp", "Application");

}

EventLog.WriteEntry("MyApp", "This is just a test.",

EventLogEntryType.Information);

}

 The WriteEntry method is overloaded; the code example shows

the most commonly used form.

 The first parameter is a string representing the event source.

 The second parameter is the message to insert in the log.

 The third parameter is an event type; this is a member of the

enumeration System.Diagnostics.EventLogEntryType.

 You can view the output of this code by launching the Event

Viewer (found in Programs, Administrative Tools).

 After running the code, click Application Log.

 You should be able to see an Information entry for the MyApp

event source.

 Double-clicking the event displays a property sheet that shows

you the detail for the event (the description "This is just a test").

if(!EventLog.SourceExists("MyApp"))

{

EventLog.CreateEventSource("MyApp", "Application");

}

EventLog.WriteEntry("MyApp", "This is just a test.",

EventLogEntryType.Information);

}

3.6 Working with Active Directory Services

 The System.DirectoryServices.ActiveDirectory namespace provides a high

level abstraction object model that builds around Microsoft Active Directory

services tasks.

 The Active Directory service concepts such as forest, domain, site, subnet,

partition, and schema are part of the object model.

 The System.DirectoryServices.ActiveDirectory namespace is used to

automate Active Directory management tasks.

System.DirectoryServices.ActiveDirectory is not used to access data that

resides within Active Directory or any other directory service.

 The System.DirectoryServices namespace should be used for this purpose.

 The System.DirectoryServices.ActiveDirectory namespace is intended for use

by application developers who are familiar with .NET Framework

programming using Visual Basic .NET or C#.

 The services that ADS provides as the core functionality required by a

centralized user management system.

 Domain Services: Stores data and manages communications between the

users and the DC. This is the primary functionality of AD DS.

 Certificate Services: Allows your DC to serve digital certificates,

signatures, and public key cryptography.

 Lightweight Directory Services: Supports LDAP for cross platform

domain services, like any Linux computers in your network.

 Directory Federation Services: Provides SSO authentication for multiple

applications in the same session, so users don’t have to keep providing the

same credentials.

 Rights Management: Controls information rights and data access

policies. For example, Rights Management determines if you can access a

folder or send an email.

3.7 Using Message Queues (System.Messaging)

 Message Queuing is a message infrastructure and a development platform

for creating distributed messaging applications for the Microsoft Windows

Operating System.

 Message Queuing applications can use the Message Queuing infrastructure to

communicate heterogeneous networks and with computers that may be

offline.

 Message Queuing provides guaranteed message delivery, efficient routing,

security, transaction support and priority based messaging.

 Administrative Privileges are required to create a queue.

 Message Queuing is useful when the client application is often disconnected

from the network.

 For example, salespersons can enter order data directory at the customer's

site. The application sends a message for each order to the message queue

that is located on the client's system.

 Message Queuing can also be useful in a connected environment. For

example, the server of a website is fully loaded with order transactions at

some specific time periods, say evening times or morning times, but the load

is low at night time.

 The solution to this problem would be to buy a faster server or add an

additional server to the system.

 There are different types of Message Queues:

1. Normal Message

2. Acknowledgement Message

3. Respond Message

4. Report Message

MSMQ HTTP Support:

 This support allows you to send and receive messages using the HTTP

protocol.

Create a message Queues

 In C#, we can also create Message Queues programmatically using the

Create() method of MessageQueue class. With Create() method, the path of

the new queue must be passed.

 Once the create() method is invoked, properties of the queue can be changed.

Using label property, the label of the queue is set to "First Queue".

Example

using System;

using System.Collections.Generic;

using System.Messaging;

using System.Text;

namespace FirstQueue

{

 class Program

 {

 static void Main(string[] args)

 {

 using (MessageQueue queue = MessageQueue.Create(@". \myqueue"))

 {

 queue.Label = "First Queue";

 Console.WriteLine("Queue Created:");

 Console.WriteLine("Path: {0}, queue.Path");

 Console.Writeline("FormatName: {0}, queue.FormatName");

 }

 }

 }

}

3.8 Manipulating XML Data

 XML is a cross-platform, hardware and software independent, text based

markup language, which enables you to store data in a structured format by

using meaningful tags.

 XML stores structured data in XML documents that are similar to databases.

Notice that unlike Databases, XML documents store data in the form of

plain text, which can be used across platforms.

 In an XML document, you specify the structure of the data by creating a

DTD or an XML schema.

 When you include a DTD in an XML document, the software checks the

structure of the XML document against the DTD.

 This process of checking the structure of the XML document is

called validating.

 The software performing the task of validating is called a validating parser.

 The following code defines the structure of an XML document that will store

data related to books:

 <?xml version="1.0"?>

<Books>

 <Book bid="B001">

 <Title> Understanding XML </Title>

 <Price> $30 </Price>

 <author>

 <FirstName> Lily </FirstName>

 <LastName>

 Hicks <LastName>

 </author>

 </Book>

 <Book bid="B002">

 <Title> .NET Framework </Title>

 <Price> $45 </Price>

 <author>

 <FirstName> Jasmine </FirstName>

 <LastName>

 Williams <LastName>

 </author>

 </Book>

</Books>

XML Web Server Control

 An XML Web Server control is used to display the contents of an XML

document without formatting or using XSL Transformations.

 You can optionally specify a XSLT style sheet that formats the XML

document before it is displayed in an XML server control.

 The XML Web Server control belongs to the System.Web.UI.WebControls

namespace.

 You can add an XML Web Server control to a Web form by dragging the

control from the Web forms tab of the toolbox.

The XML Web Server control has the following properties:

 DocumentSource: Allows you to specify the URL or the path of the XML

document to be displayed in the Web form.

 TransformSource: Allows you to specify the URL of the XSLT file, which

transforms the XML document into the required format before it is displayed

in the Web form.

 Document: Allows you to specify a reference to an object of the

XMLDocument class. This property is available only at runtime.

 Transform: Allows you to specify a reference to an object of the

XMLTransform class. This property is available only at runtime.

3.9 Sending Internet E-mail

 Simple Mail Transfer Protocol (SMTP) is a TCP/IP protocol used in sending

and receiving e-mail.

 Most e-mail systems that send mail over the Internet use SMTP to send

messages from one server to another.

 The messages can then be retrieved with an e-mail client using either POP or

IMAP.

 The following is a list of SMTP Server and Port Numbers:

Important SMTP Class Properties:

 Host: Server URL for SMTP (check the preceding table).

 EnableSsl: Check your host accepts SSL Connections (True or False).

 Port: Port Number of the SMTP server (check the preceding table).

 Credentials: Valid login credentials for the SMTP server (the email address

and password).

 UseDefaultCredentials: When we set to True in UseDefaultCredentials then

that specifies to allow authentication based on the credentials of the account

used to send emails.

Unit – 4

Building .NET Managed Components for COM+

 Modern software systems are component-based. Components make large, enterprise-

wide software systems easier to manage since system functionality is divided among

several components.

 VB.NET and all other .NET-supported languages have the ability to create these

components, which can be used and reused in a variety of projects, including (but not

limited to) ASP.NET projects, Windows applications, and unmanaged code.

4.1 The concept of Managed Code Execution

 Managed code is any source code you compile that targets the .NET Framework.

 All the code we’ve examined so far in this book (ASP.NET, console applications,

and so on) has been managed code.

 The .NET Framework is a runtime environment in which code executes. Internal

tasks, such as allocating and freeing memory, and software services (like the kinds

discussed in Chapter 4) are handled by the .NET Framework as well.

 As a result, many Windows applications could be distributed with as little as one

file, the .exe file that contained the main program code. Since no other files were

required, many developers referred to these types of applications as native code

applications since the preinstalled runtime code was quite small.

 VB developers using version 6.0 or earlier might be aware of special support files

that must be installed on the deployment computer in order for VB applications to

run.

 These .dll files make up the VB runtime environment. Like the C/C++ runtime

code mentioned above, it provides a code wrapper around operating system

internals and services.

 Programs targeted to such a runtime don’t compile to machine object code.

 Instead, they compile to another language, referred to as an intermediate

language.

 The runtime then executes this intermediate language using an engine built for a

particular operating system.

 The most popular type of intermediate language system is Java. The intermediate

language for Java is referred to as bytecode.

 The .NET Framework works in a similar manner.

 Compiled Microsoft .NET code is referred to as Microsoft Intermediate Language

(MSIL).

4.2 The Common Language Runtime

 The runtime environment for the .NET Framework is called the Common Language

Runtime (CLR).

 Managed code execution happens inside the CLR space. The goal of the CLR is to

provide an environment that includes language integration, exception handling,

security, versioning, deployment, debugging, profiling, and component interaction.

 Metadata makes cross-language integration possible. When you compile .NET

managed code, the metadata gets stored along with the object code.

 Metadata describes to the CLR various types of information (for example, data types,

members, and references) used in the code.

 This data is used by the CLR to “manage” the code execution by providing such

services as memory allocation, method invocation, and security enforcement.

The Common Type System

 CLR implements a series of data types that are cross-language compatible.

That system of data types is known as the Common Type System (CTS).

 CTS data types include simple value types, classes, enumerated value types,

interfaces, and delegates.

 Simple value data types include primitive types as well as user-defined types.

 Primitive types include integers, Boolean values, and strings. These types are

included in the System namespace.

 The data types used thus far in the VB.NET programs in this book are also

included in this namespace.

 Primitive Data Types and VB.NET Equivalents

Example:

Structure Student ------------- 1

Dim FirstName As String

Dim LastName As String

Dim SSN As String

Dim ClassRank As Integer

End Structure

 With udtStudent ---------------- 2

.FirstName = "Matt"

.LastName = "Crouch"

.SSN = "888-88-1234"

 .ClassRank = 2

End With

 The example shows a typical structure definition. The members are enclosed in

the Structure . . . End Structure block that begins in line 1.

 The VB.NET With . . . End With statement in line 2 is used to save some

typing. It allows you to refer to the individual members of the structure without

fully qualifying the names of the structure members.

4.3 COM+ Component Services

 A particular technology that deserves attention is COM+ Component Services.

 These technologies were the predecessors to the .NET Framework.

Overview of COM

 The Component Object Model (COM) was designed to address the shortcomings of

conventional object-oriented languages like C++ and traditional binary software

distribution of code.

 COM is about not a particular type of software but rather a philosophy of

programming.

 COM objects are roughly equivalent to normal classes, but COM defines how these

objects interact with other programs at the binary level.

 This “binary encapsulation” allows you to treat each COM object as a “black box.”

 In the Windows environment, these binary objects (COM objects) are packaged as

either DLLs or executable programs.

 COM is also backed by a series of utility functions that provide routines for

instantiating COM objects, process communication, and so on.

 COM was the first methodology to address object-oriented software reuse.

 COM has enjoyed great commercial success; many third-party software vendors

provide COM objects to perform a wide range of tasks, from e-mail to image

processing.

 COM is also highly useful for creating components called business objects.

Overview of Transactions

 Several smaller steps are involved in a transaction.

 The success or failure of the transaction depends on whether or not all of the smaller

steps are completed successfully.

 If a failure occurs at any point during a transaction, you don’t want any data changes

made by previous steps to remain.

 A transaction is committed when all steps have succeeded. A failed transaction

causes a rollback to occur.

 Well-designed transactions conform to ACID principles. ACID is an acronym for

Atomicity, Consistency, Isolation, and Durability.

■ Atomicity means that either the operation that the component performs is completely

successful or the data that the component operates on does not change at all. If a failure

occurs at any step that could compromise the integrity of the system, the changes are

undone.

■ Consistency deals with preserving the system state in the case of a transaction failure.

 ■ Isolation means that a transaction acts as though it has complete control of the system.

In effect, this means that transactions are executed one at a time.

■ Durability is the ability of a system to return to any state that was present before the

execution of a transaction.

4.4 Using VB.NET to Develop Managed Components

 The concepts you need to understand to build managed components using VB.NET.

Defining Namespaces

 Namespaces are a way to hierarchically organize class names. Namespaces become

especially useful when the number of classes available to you is quite large.

 You’ve been exposed to namespaces quite a bit already in this book. Whenever you

write VB.NET code, you use .NET classes in the System namespace.

 For example, when you use the Console.WriteLine() command, you are using an

assembly called Console that exists in the System namespace.

System.Console.WriteLine(. . .)

Using the Class Library

 Managed components start with a VS.NET project called a class library.

 The class library puts the infrastructure in place for creating an assembly for packing

a component.

 You can view and modify them by selecting the Project➔Properties menu. This

opens the Property Pages dialogshown below

Using Component “Plumbing” Code

 When class library projects are started in VB.NET, some stub code is generated for

you.

 A new, “empty” component’s “plumbing” code looks something like this: Public

Class Class1 End Class

 The VS.NET IDE adds this code for you for an empty class called Class1.

 A .vb file is also generated that contains the class’s code (which VS.NET should be

displaying in the front-most window).

 Give the class another name (in the example below, we’ll name it CTaxComponent)

by changing it in the editor and then renaming the class file in the Solution Explorer

to CTaxComponent.

 The code should now say:

Public Class CTaxComponent

.

.

.

 End Class

Adding Initialization Code

 Whenever your component is instantiated, the New() subroutine is called.

 Any initialization code you require goes here.

 As an illustration, suppose your class contains a private member variable that

you wish to have an initial default value when the component is instantiated.

 Such initialization code could look like the following.

 Private m_dblTaxRate As Double

 Public Sub New()

MyBase.New ' Specify default percent tax rate

m_dblTaxRate = 5

End Sub

Creating Methods

 When creating class libraries and components, you’ll notice that the same

principles apply to components. Methods are simply member functions and

subroutines.

 In order for other .NET applications to access methods you define, you need to

expose them by marking them for public access.

 Here’s a public method definition and implementation to illustrate. Public

Function CalculatePriceAfterTax(_ ByVal Amount As Double) As Double

CalculatePriceAfterTax = Amount * (1 + (m_dblTaxRate / 100)) End Function

Creating Properties

 Component properties are created in the same way as properties for

regular classes. Like methods, they should be marked for public access.

 The property in the sample code below sets or gets the value of the

private class member variable used in the previous example.

Public Property TaxRate() As Double

Get

TaxRate = m_dblTaxRate

End Get

Set(ByVal Value As Double)

m_dblTaxRate = Value

End Set

End Property

4.5 Serviced Components

 With COM+ Component Services, your components can take advantage of automatic

transaction processing, object pooling, and role-based security.

 Components that use COM+ Component Services are called serviced components.

 Setting up a component to take advantage of these features is not difficult.

 It requires creating a class library project as shown earlier plus creating several

component classes to handle the business logic.

 Example: Three different types of users will work with this system: Suppliers,

Supervisors, and Receiving Clerks.

 The above shows the database schema used for the ordering and inventory system,

showing tables, columns, and foreign key relationships among columns.

5.6 Building VB.NET Serviced Components

AN ORDERING AND INVENTORY SYSTEM MADE WITH SERVICED

COMPONENTS

STEP 1. Create a new VB.NET class library project.

a. Open VS.NET and select File➔New➔Project.

b. Highlight Class Library and give the new project the name

“SupermarketSystem”.

STEP 2. Design the components.

a. Consider the design of your system. First, establish the users of the system and

their roles:

 • Supervisors (adding new products, receiving orders, updating inventory)

 • Receiving Clerks (receiving orders)

• Suppliers (shipping goods to the supermarket and supplying order information)

b. Organize these functions into a series of classes for your class library. Four classes will

handle the business logic of the different duties that each user will perform: Product,

ReceiveOrder, UpdateInventory, and CreateOrder. Lab Figure shows below have the

classes and the methods of each class.

STEP 3. Write code for component functionality. In the process of implementing the

components, we’ll discuss these topics:

 • How to use the System.EnterpriseServices namespace and one particular class: the

ServicedComponent class

• How to use class attributes to specify the type of COM+ support you want your

components to have

• How to specify an interface from which to call the components

• How to control the transaction inside the components

a. Create the classes outlined in the specifications in Step 2: Product, ReceiveOrder,

UpdateInventory, and CreateOrder. For each of these classes, right-click the project in the

Solution Explorer and select Add

 Building serviced components requires support from COM+ Component Services.

 The .NET Framework implements this support through classes in the

System.EnterpriseServices namespace.

 VS.NET doesn’t include this reference by default, so you’ll need to add it yourself.

Select Project➔Add Reference from the menu and select System.EnterpriseServices

from the list.

 Click the Select button and then click OK.

c. Now you’re ready to add component functionality. Start by adding the

following code for the Product class.

STEP 4. Create the ASP.NET application.

 a. Create a new VB ASP.NET project called “SupermarketWeb”.

b. Add a reference to System.EnterpriseServices to the project by rightclicking the project

icon and selecting Add Reference . . . from the pop-up menu

STEP 5. Run the application.

STEP 6. Add role-based security

STEP 7. Test the role-based security.

4.6 The need for Web Services

 A web service is a unit of managed code that can be remotely invoked using HTTP.

 That is, it can be activated using HTTP requests. Web services allow you to expose

the functionality of your existing code over the network.

 Once it is exposed on the network, other applications can use the functionality of

your program.

 Different books and different organizations provide different definitions to Web

Services. Some of them are listed here.

 A web service is any piece of software that makes itself available over the internet

and uses a standardized XML messaging system.

 XML is used to encode all communications to a web service. For example, a client

invokes a web service by sending an XML message, then waits for a corresponding

XML response.

 As all communication is in XML, web services are not tied to any one operating

system or programming language—Java can talk with Perl; Windows applications

can talk with Unix applications.

 Web services are self-contained, modular, distributed, dynamic applications that can

be described, published, located, or invoked over the network to create products,

processes, and supply chains.

 These applications can be local, distributed, or web-based. Web services are built on

top of open standards such as TCP/IP, HTTP, Java, HTML, and XML.

 Web services are XML-based information exchange systems that use the Internet for

direct application-to-application interaction. These systems can include programs,

objects, messages, or documents.

 A web service is a collection of open protocols and standards used for exchanging

data between applications or systems.

 Software applications written in various programming languages and running on

various platforms can use web services to exchange data over computer networks

like the Internet in a manner similar to inter-process communication on a single

computer.

 This interoperability (e.g., between Java and Python, or Windows and Linux

applications) is due to the use of open standards.

 To summarize, a complete web service is, therefore, any service that −

 Is available over the Internet or private (intranet) networks

 Uses a standardized XML messaging system

 Is not tied to any one operating system or programming language

 Is self-describing via a common XML grammar

 Is discoverable via a simple find mechanism

4.7 Overview of Web Services

 Web services are compiled classes just like the classes we have worked with up to

this point.

 These classes are contained within a .asmx file.

 This is how ASP.NET identifies a web service.

The .asmx file

 Active Server Method File, a file with the ASMX file extension is an ASP.NET Web

Service Source file.

 Unlike ASP.NET web pages that use the .ASPX file extension, ASMX files function

as a service that doesn't have a graphical user interface and instead is used to move

data and perform other actions behind the scenes.

 ASMX are XML based files and always start with the "@ WebService" directive

which is used to correlate the URL (Uniform Resource Locator) address of the Web

Service with its implementation.

 This is followed by the "Language" parameter which is needed to set the

programming language to JScript, C# or Visual Basic.

<%@ Webservice Language=”VB” class=”mywebserviceclass” %>

Imports System.Web.Services

 The second line denotes that you wish to import the required class libraries that

enable web services to work.

Web Service Classes And Web Methods

 A Web services begins with a class definition.

 Web services classes are just like classes that we have created before but with a

couple of distinguishing elements.

 Simple class definition

Public class firstclass

Inherits System.web,services,webservice

<webMethod>Public Function Helloworld() as string

Helloworld = “Hello World”

End Function

4.8 Web Services Description Language

https://www.lifewire.com/what-is-a-file-2625878
https://www.lifewire.com/what-is-a-file-extension-2625879
https://www.lifewire.com/what-is-an-aspx-file-2619705

 WSDL stands for Web Services Description Language. It is the standard format for

describing a web service.

 WSDL was developed jointly by Microsoft and IBM.

Features of WSDL

 WSDL is an XML-based protocol for information exchange in decentralized and

distributed environments.

 WSDL definitions describe how to access a web service and what operations it will

perform.

 WSDL is a language for describing how to interface with XML-based services.

 WSDL is an integral part of Universal Description, Discovery, and Integration

(UDDI), an XML-based worldwide business registry.

 WSDL is the language that UDDI uses.

 WSDL is pronounced as 'wiz-dull' and spelled out as 'W-S-D-L'.

WSDL Usage

 WSDL is often used in combination with SOAP and XML Schema to provide web

services over the Internet.

 A client program connecting to a web service can read the WSDL to determine what

functions are available on the server.

 Any special datatypes used are embedded in the WSDL file in the form of XML

Schema. The client can then use SOAP to actually call one of the functions listed in

the WSDL.

The WSDL Document Structure

 The main structure of a WSDL document looks like this −

<definitions>

 <types>

 definition of types........

 </types>

 <message>

 definition of a message....

 </message>

 <portType>

 <operation>

 definition of a operation.......

 </operation>

 </portType>

 <binding>

 definition of a binding....

 </binding>

 <service>

 definition of a service....

 </service>

</definitions>

 A WSDL document can also contain other elements, like extension elements and a

service element that makes it possible to group together the definitions of several

web services in one single WSDL document.

4.9 Web Service Wire Formats

 The final piece of the ASP.NET Web Services infrastructure consists of the Web

service wire formats.

 Wire formats define the method by which Web service request and response

messages are encoded and transported between the Web service and any consumer.

 To maximize the reach of Web services on the Internet, standard Internet protocols

are used.

 ASP.NET Web Services support three wire formats:

1. HTTP-GET:

 The HTTP-GET protocol encodes Web service operation requests and arguments in

the URL to the Web service. The operation is coded as part of the URL string and

any arguments are coded as query string parameters appended to the base URL.

 For example:

http://localhost/ctemp/ctemp.asmx/ctemp?Temperature= 32&FromUnits=F&ToUnits=C

http://localhost/ctemp/ctemp.asmx/ctemp?Temperature=

 This URL specifies the Web-addressable entry point for the CTemp Web service

(Ctemp.asxm), including the method to be called (also named ctemp).

 The arguments to the ctemp method are passed as query string arguments to the

method request.

 Similar to the way in which WSDL documents are generated and returned to requests

for such information via a URL to the Web service entry point file (the ASMX file),

the HTTP-GET method of calling Web service methods is handled by

theWebServiceHandlerFactory class.

 This class takes the uRl and query string parameters as input and translates this into a

method call on the appropriate Web service class implementation.

 .NET Proxy classes use the HttpGetClientProtocol class in the System.Web.Services.

Protocols namespace to invoke Web services that support the HTTP-GET protocol.

2. HTTP-POST :

 The HTTP-POST protocol encodes Web service operation requests and arguments

within the payload area of the HTTP-POST request as name/value pairs.

 This technique of invoking a Web service method is identical in operation to the

HTTP-GET method (from an ASP.NET perspective), except in the way in which the

Web service call arguments are passed to the server.

 Once again, the .NET Framework's WebServiceHandlerFactory class is responsible

for extracting the method name and arguments from the request and calling the

appropriate Web service method found in the Web service class implementation.

 .NET Proxy classes use the HttpPostClientProtocol class in the

System.Web.Services. Protocols namespace to invoke Web services that support the

HTTP-POST protocol.

3. HTTP-SOAP.

 HTTP-SOAP is the default ASP.NET Web Service wire format.

 It is based on the SOAP specification and supports the widest range of simple and

complex data types (including document-oriented operations).

 Web service request and response messages are encoded into SOAP messages that

are included in the payload area of an HTTP-POST message.

https://www.visualbasicplanet.info/web-services/understanding-web-service-clien-ts.html

 SOAP messages are encoded in XML using the SOAP vocabulary defined in the

specification.

 .NET Proxy classes use the HttpSimpleClientServiceProtocol class in the System.

Web.Services.Protocols namespace to invoke Web services that support the HTTP-

SOAP protocol.

4.10 Web Services Discovery

 Web Services Discovery provides access to software systems over the Internet using

standard protocols.

 In the most basic scenario there is a Web Service Provider that publishes a service

and a Web Service Consumer that uses this service. Web Service Discovery is the

process of finding suitable web services for a given task.

 Publishing a web service involves creating a software artifact and making it

accessible to potential consumers.

 Web service providers augment a service endpoint interface with an interface

description using the Web Services Description Language (WSDL) so that a

consumer can use the service.

 The Web services framework provides two methods for discovering web

services:Static Discovery and Dynamic discovery

Static Discovery:

 Static discovery allows you to explicitly define the location of individual web

services.

 It also allows you to group together the location of web services into logical unit.

 A Discovery (.disco) file is, not surprisingly,an XML file with a defined schema.

<disco:discovery

.

.

</disco:discovery>

Dynamic Discovery:

 Dynamic discovery provides an automatic way to discover multiple web services.

 It allow user to discover every available web services underneath a given URL.

 A dynamic discovery file looks like the following code:

<dynamicdiscovery>

https://en.wikipedia.org/wiki/Web_services
https://en.wikipedia.org/wiki/Software_artifact
https://en.wikipedia.org/wiki/Service_endpoint_interface
https://en.wikipedia.org/wiki/Web_Services_Description_Language

<exclude path=””>

.

</dynamicdiscovery>

 Automatically enables the discovery of web services in the directory in which the file

resides.Notice the <exclude> tags in the file.

4.11 COMPONENTS OF WEB SERVICE XML-RPC

This is the simplest

computers.

XML-based protocol for exchanging information between

1. XML-RPC is a simple protocol that uses XML messages to perform RPCs.

2. Requests are encoded in XML and sent via HTTP POST.

3. XML responses are embedded in the body of the HTTP response.

4. XML-RPC is platform-independent.

5. XML-RPC allows diverse applications to communicate.

6. A Java client can speak XML-RPC to a Perl server.

7. XML-RPC is the easiest way to get started with web services.

8. SOAP

9. SOAP is an XML-based protocol for exchanging information between computers.

10. SOAP is a communication protocol.

11. SOAP is for communication between applications.

12. SOAP is a format for sending messages.

13. SOAP is designed to communicate via Internet.

14. SOAP is platform independent.

15. SOAP is language independent.

16. SOAP is simple and extensible.

17. SOAP allows you to get around firewalls.

18. SOAP will be developed as a W3C standard.

19. WSDL

20. WSDL is an XML-based language for describing web services and how to access them.

21. WSDL stands for Web Services Description Language.

22. WSDL was developed jointly by Microsoft and IBM.

23. WSDL is an XML based protocol for information exchange in

distributed environments.

24. WSDL is the standard format for describing a web service.

decentralized and

a

25. WSDL definition describes how to access a web service and what operations it will

perform.

26. WSDL is a language for describing how to interface with XML-based services.

27. WSDL is an integral part of UDDI, an XML-based worldwide business registry.

28. WSDL is the language th t UDDI uses.

29. WSDL is pronounced as 'wiz-dull' and spelled out as 'W-S-D-L'

30. UDDI

31. UDDI is an XML-based standard for describing, publishing, and finding web services.

32. UDDI stands for Universal Description, Discovery, and Integration.

33. UDDI is a specification for a distributed registry of web services.

34. UDDI is platform independent, open framework.

35. UDDI can communicate via SOAP, CORBA, and Java RMI Protocol.

36. UDDI uses WSDL to describe interfaces to web services.

37. UDDI is seen with SOAP and WSDL as one of the three foundation standards

of web services.

38. UDDI is an open industry initiative enabling businesses to discover each other

and define how they interact over the Internet.

UNIT-5

Accessing Data with ADO.NET

 ActiveX Data Object.NET (ADO.NET) is a software library in the .NET

framework consisting of software components providing data access services.

 ADO.NET is designed to enable developers to write managed code for

obtaining disconnected access to data sources, which can be relational or non-

relational (such as XML or application data).

 This feature of ADO.NET helps to create data-sharing, distributed applications.

5.1 Overview of Data Access on the Web

 Data access technologies have a long and colourful history,from earliest file based

data stores to ADO.NET.

 The Evolutionary path of data access

1.Flat Files: A flat-file database is a database stored in a file called a flat file. Records

follow a uniform format, and there are no structures for indexing or recognizing

relationships between records. The file is simple. A flat file can be a plain text file, or

a binary file. Relationships can be inferred from the data in the database, but the database

format itself does not make those relationships explicit.

2. Legacy or Maniframe Data: The program controlling the terminals session,in turn,passes

the “Scraped” data back to the browser.It a slow process,and the ways you can

retrieve,update and assiminlate data are limited by established interface of the mainframes

character based user program.

3. Proprietary Database APIs: An API is a set of programming code that enables data

transmission between one software product and another. It also contains the terms of this

data exchange. APIs are sets of requirements that govern how one application can

communicate and interact with another. APIs can also allow developers to access certain

internal functions of a program, although this is not typically the case for web APIs. In the

simplest terms, an API allows one piece of software to interact with another piece of

software, whether within a single computer via a mechanism provided by the operating

system or over an internal or external TCP/IP-based or non-TCP/IP-based network

4. Standard APIs : ODBC is a single C language API used to access relational databases on

the wide variety of distributed system.ODBC has two main drawbacks:

1. The API Functions have only a call level interface compatible with this language.

https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Plain_text
https://en.wikipedia.org/wiki/Binary_file
https://en.wikipedia.org/wiki/Web_API
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/TCP/IP

2.ODBC requires many calls to the ODBC API to perform the simplest of operations.Many

of the low level details of database access with ODBC are left to the programmer.

5.2 ADO.NET programming objects and architecture

 ADO.NET consist of a set of Objects that expose data access services to the .NET

environment.

 It is a data access technology from Microsoft .Net Framework , which provides

communication between relational and non relational systems through a common set

of components .

 System.Data namespace is the core of ADO.NET and it contains classes used by all

data providers.

 ADO.NET is designed to be easy to use, and Visual Studio provides several wizards

and other features that you can use to generate ADO.NET data access code.

Data Providers and DataSet

 The two key components of ADO.NET are Data Providers and DataSet . 1. The Data

Provider classes are meant to work with different kinds of data sources. They are

used to perform all data-management operations on specific databases.

2. DataSet class provides mechanisms for managing data when it is disconnected

from the data source.

Data Providers

 The .Net Framework includes mainly three Data Providers for ADO.NET. They are

the Microsoft SQL Server Data Provider , OLEDB Data Provider and ODBC Data

Provider .

 SQL Server uses the SqlConnection object , OLEDB uses the OleDbConnection

Object and ODBC uses OdbcConnection Object respectively.

 A data provider contains Connection, Command, DataAdapter, and DataReader

objects. These four objects provides the functionality of Data Providers in the

ADO.NET.

Connection

 The Connection Object provides physical connection to the Data Source. Connection

object needs the necessary information to recognize the data source and to log on to it

properly, this information is provided through a connection string.

Command

 The Command Object uses to perform SQL statement or stored procedure to be

executed at the Data Source. The command object provides a number of Execute

methods that can be used to perform the SQL queries in a variety of fashions.

DataReader

 The DataReader Object is a stream-based , forward-only, read-only retrieval of query

results from the Data Source, which do not update the data. DataReader requires a

live connection with the databse and provides a very intelligent way of consuming all

or part of the result set.

DataAdapter

 DataAdapter Object populate a Dataset Object with results from a Data Source . It is

a special class whose purpose is to bridge the gap between the disconnected Dataset

objects and the physical data source.

5.3 Displaying Database Data

 The Simplest of ADO.NET code using the IDataReader interface to read data from a

single database.

IDataReader interface (System.Data.IDataReader)

 The IDataReader interface is implemented by all data readers. A data reader provides

a way to read a command-only stream of data from a data source.

 You can’t create a data reader directly.

 Instead, an open IDataReader instance is returned from

the IDbCommand.ExecuteReader() method.

 You can then use the Read() method to move from one row to the next. The Read(

) method returns true if it can successfully read a row or false if there are no more

rows remaining, and it has moved beyond the bounds of the result set.

 There is no way to move backward. When it is first created, the IDataReader doesn’t

yet point to a row.

 You must call Read() to move to the first row before you attempt to read any

information.

 You can use NextResult() to move to the next result set if you are using a command

or stored procedure that returns multiple result sets.

5.4 Programming with the DataList and DataGrid Controls

 DataGrid control is one of the most powerful Web controls. By using just a DataGrid

control, you can write full-fledged Web applications for your Web site in this section,

you'll learn all about the Data Grid methods and properties.

 The following examples are heavily based on this control.

 You can use a DataGrid control to display tabular data.

 It also provides the ability to insert, update, sort, and scroll the data. Using and

binding a Data Grid is ability to insert, update, sort, and scroll the data.

 Using and binding a Data Grid is easy with the help of the ADO.NET datasets.

 This grid is capable of auto generating the columns and rows depending on which

data you're connecting.

 Another control worth mentioning is the DataList control. A DataList control

provides a list view of the data from the data source. These controls work similarly.

 DataGrid and DataList controls have similar properties. Table describes some of the

common DataGrid properties.

Setting DataGrid Control Properties at Design-Time

 In VS .NET you can set the DataGrid control's properties at design-time by right-

clicking on the control and selecting the properties menu item. This displays the

Properties window

 Most of these properties should look familiar to you by now.

 You can set the DataSource property to a data view, dataset, data view

manager, or a data reader.

 The DataMember property represents a column of a data table if you want to

display only one column in the control.

5.5 Working with the DataSet and DataTable Objects

 Creating a DataTable and adding it to a DataSet is pretty much the same as adding a

DataColumn to a DataTable.

 You don’t have to create another project to show this feature, just comment what you

have written inside your main method and paste the following code.

1.// Create a DataSet object

2.DataSet ds = new DataSet("MyDataSet");

3. // Add a DataTable named Table-1

4. DataTable table1 = ds.Tables.Add("Table-1");

5. // Here you can configure it, that is add some columns

6.// in the way we showed previously

7.DataTable table2 = new DataTable("Table-2");

8.ds.Tables.Add(table2);

9. DataTable table3 = new DataTable("Table-3");

10. DataTable table4 = new DataTable("Table-4");

11. // Configure those tables and then add them

12. // together

13. ds.Tables.AddRange(new DataTable[] { table3, table4 });

14. Console.WriteLine("DataSet {0} has the following {1} DataTables",

15.ds.DataSetName, ds.Tables.Count);

16. foreach(DataTable dt in ds.Tables)

17. Console.WriteLine("\t\t\t{0}", dt.TableName);

18. Console.ReadKey();

 When you create a DataSet instance, you can pass a string value as a parameter in

order to name that DataSet (line 2).

 You can create and add a DataTable to a DataSet at the same time, using

the DataSet.Tables.Add method (line 5).

 The returned table, of course can be configured later.

 You can add multiple tables to a DataSet

using DataSet.Tables.AddRange fuction (line 16).

 Build and run your solution.

5.6 SQL transaction class

 Database transaction takes a database from one consistent state to another.

 At the end of the transaction the system must be in the prior state if the transaction

fails or the status of the system should reflect the successful completion if the

transaction goes through.

 It is a single unit of work.

 If a transaction is successful, all of the data modifications made during the

transaction are committed and become a permanent part of the database.

 If a transaction encounters errors or gets rolled back, then all of the data

modifications are erased.

Transaction commands

 The transaction commands are only used in SQL DML language like INSERT,

UPDATE and DELETE, you cannot use it with DDL or DCL language as these

DDL and DCL languages are used to in creating structure and SQL security.

 The transaction commands are given below,

 COMMIT

This command is used to save the changes invoked by the transaction.

 ROLLBACK

This command is used to undo the changes made by transaction.

 SAVEPOINT

With the help of this command you can roll the transaction back to a certain point

without rolling back the entire transaction.

 SET TRANSACTION

This command is used to specify characteristics for the transaction. For example, you

can specify a transaction to be read only, or read write it. Also helps set the name of

transaction.

 Example:

DECLARE @TranName VARCHAR(20);

SELECT @TranName = 'MyTransaction';

BEGIN TRANSACTION @TranName;

USE AdventureWorks2012;

DELETE FROM AdventureWorks2012.HumanResources.JobCandidate

 WHERE JobCandidateID = 13;

COMMIT TRANSACTION @TranName;

GO

Properties of SQL Transactions

There are 4 properties in SQL Server Transactions called as ACID.

 Atomicity − This property is used to ensure that all operations within the work unit are

completed successfully. Otherwise, the dealing is aborted at the purpose of failure and

the previous operations square measure rolled back to their former state.

 Consistency – This property is used to ensure that the database properly changes states

upon a successfully committed transaction.

 Isolation − Permits transactions to operate independently of and transparent to each

other.

 Durability − This property is used to ensure that the result or impact of a committed

transaction persists in case of a system failure.

5.7 Working with Typed DataSet Objects.

 we can specify the Data type when we create a DataColumn for a DataTable.

 This is to enforce the runtime Type-safety for the column so that only data of

specified data type can be stored in the column.

 In the same way, in most of the cases we prefer to make a DataSet itself as

Type-safe so as to protect it from runtime mismatch. Hence Typed DataSets

generate classes that expose each object the in the DataSet in Type-safe

manner.

 These classes inherits directly from DataSet class.

 A DataColumn defines the column name and datatype. We can create a new

DataColumn using the DataColumn constructor or by invoking the Add

method of the DataTable.

 Columns collection property. The DataColumn is the fundamental building

block for creating the schema of a DataTable. We build the schema by adding

one or more DataColumn objects to the DataColumnCollection.

 For more information, see Adding Columns to a Table.

 Each DataColumn has a DataType property that determines the kind of data

the DataColumn contains.

5.8 Security in asp.net application Authentication:

 It is the process of ensuring the user's identity and authenticity.

ASP.NET allows four types of authentications:

1. Windows Authentication

2. Forms Authentication

3. Passport Authentication

4. Custom Authentication

Authorization:

It is the process of defining and allotting specific roles to specific users.

Confidentiality:

It involves encrypting the channel between the client browser and the web server.

Integrity:

It involves

maintaining signature.

the integrity of data. For example,implementing digital

Forms-Based Authentication

Traditionally, forms-based authentication involves editing the

web.config file and adding a login page with appropriate

authentication code.

The web.config file could be edited and the following codes written on it:

<configuration>

<system.web>

<authentication mode="Forms">

<forms loginUrl ="login.aspx"/>

</authentication>

<authorization>

<deny users="?"/>

</authorization>

</system.web>

...

...

</configuration>

The login.aspx page mentioned in the above code snippet could have

the following code behind file with the usernames and passwords for

authentication hard coded into it.

protected bool authenticate(String uname, String pass)

{

if(uname == "Tom")

{

if(pass == "tom123") return true;

}

if(uname == "Dick")

{

if(pass == "dick123")

return true;

}

if(uname == "Harry")

{

if(pass == "har123") return true;
}

return false;

}

public void OnLogin(Object src, EventArgs e)

{

if (authenticate(txtuser.Text, txtpwd.Text))

{
FormsAuthentication.RedirectFromLoginPage(txtuser.Text,
chkrem.Checked);

}
else
{

Response.Write("Invalid user name or password");
}

}

5.9 IIS Authentication and Authorization Security

 The <authorization> element allows you to configure the user accounts

that can access your site or application.

 Use authorization in combination with authentication to secure access to

content on your server.

 Authentication confirms the identity of a user, while authorization

determines what resources users can or cannot access.

 IIS defines two types of authorization rules, Allow rules and Deny rules:

 Allow rules let you define the user accounts or user groups that can access a

site, an application, or all the sites on a server.

 Deny rules let you define the user accounts or user groups that cannot

access a site, an application, or all the sites on a server.

Windows 8 or Windows 8.1

1. On the Start screen, move the pointer all the way to the lower left corner,

right-click the Start button, and then click Control Panel. - In Control

Panel, click Programs and Features, and then click Turn Windows

features on or off. - Expand Internet Information Services,

expand World Wide Web Services, expand Security, and then select URL

Authorization.

2. Click Ok and the Close

To add an authorization rule

1. Open Internet Information Services (IIS) Manager:

o If you are using Windows Server 2012 or Windows Server 2012 R2:

 On the taskbar, click Server Manager, click Tools, and then

click Internet Information Services (IIS) Manager.

o If you are using Windows 8 or Windows 8.1:

 Hold down the Windows key, press the letter X, and then

click Control Panel.

 Click Administrative Tools, and then double-click Internet

Information Services (IIS) Manager.

o If you are using Windows Server 2008 or Windows Server 2008 R2:

 On the taskbar, click Start, point to Administrative Tools, and then

click Internet Information Services (IIS) Manager.

o If you are using Windows Vista or Windows 7:

 On the taskbar, click Start, and then click Control Panel.

 Double-click Administrative Tools, and then double-click Internet

Information Services (IIS) Manager.

2. In the Connections pane, expand the server name, expand Sites, and then

navigate to the site or application on which you want to configure

authorization.

3. In the Home pane, double-click Authorization Rules.

4. To add a new authorization rule, in the Actions pane click Add Allow

Rule... or Add Deny Rule...

5. Apply the authorization settings needed for your site or application, and

then click OK.

5.10 ASP.NET Authentications Security

 In this series of articles, we'll look at some options for securing a web

API from unauthorized users.

 This series will cover both authentication and authorization.

 Authentication is knowing the identity of the user. For example, Alice logs

in with her username and password, and the server uses the password to

authenticate Alice.

 Authorization is deciding whether a user is allowed to perform an action.

For example, Alice has permission to get a resource but not create a

resource.

 The first article in the series gives a general overview of authentication

and authorization in ASP.NET Web API. Other topics describe common

authentication scenarios for Web API.

Authentication

 Web API assumes that authentication happens in the host. For web-

hosting, the host is IIS, which uses HTTP modules for authentication.

You can configure your project to use any of the authentication modules

built in to IIS or ASP.NET, or write your own HTTP module to perform

custom authentication.

 When the host authenticates the user, it creates a principal, which is

an IPrincipal object that represents the security context under which code

is running. The host attaches the principal to the current thread by

setting Thread.CurrentPrincipal.

HTTP Message Handlers for Authentication

 Instead of using the host for authentication, you can put authentication

logic into an HTTP message handler. In that case, the message handler

examines the HTTP request and sets the principal.

 When should you use message handlers for authentication? Here are

some tradeoffs:

 An HTTP module sees all requests that go through the ASP.NET pipeline.

A message handler only sees requests that are routed to Web API.

https://msdn.microsoft.com/library/System.Security.Principal.IPrincipal.aspx
https://docs.microsoft.com/en-us/aspnet/web-api/overview/advanced/http-message-handlers

 You can set per-route message handlers, which lets you apply an

authentication scheme to a specific route.

 HTTP modules are specific to IIS. Message handlers are host-agnostic, so

they can be used with both web-hosting and self-hosting.

 HTTP modules participate in IIS logging, auditing, and so on.

 HTTP modules run earlier in the pipeline. If you handle authentication in a

message handler, the principal does not get set until the handler runs.

Moreover, the principal reverts back to the previous principal when the

response leaves the message handler.

Authorization

 Authorization happens later in the pipeline, closer to the controller. That

lets you make more granular choices when you grant access to resources.

 Authorization filters run before the controller action. If the request is not

authorized, the filter returns an error response, and the action is not invoked.

 Within a controller action, you can get the current principal from

the ApiController.User property. For example, you might filter a list of

resources based on the user name, returning only those resources that belong

to that user.

 This filter checks whether the user is authenticated. If not, it returns

HTTP status code 401 (Unauthorized), without invoking the action.

 You can apply the filter globally, at the controller level, or at the level of

individual actions.

